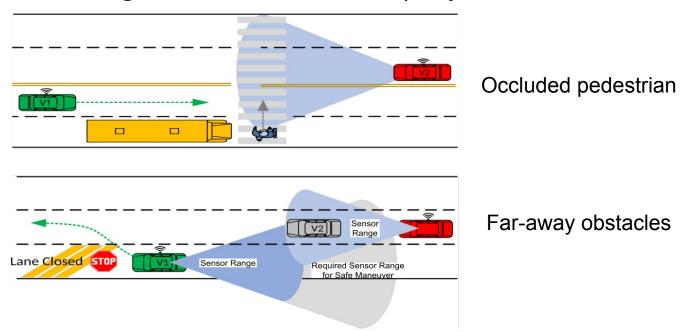
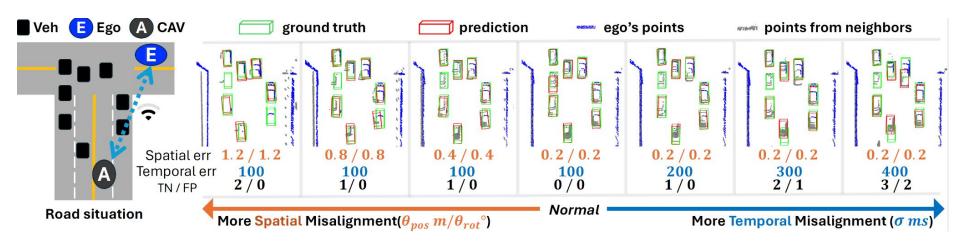
SCORPION: Robust Spatial-Temporal Collaborative Perception Model on Lossy Network

Ruiyang Zhu, Minkyoung Cho, Shuqing Zeng[†], Fan Bai[†], Z. Morley Mao

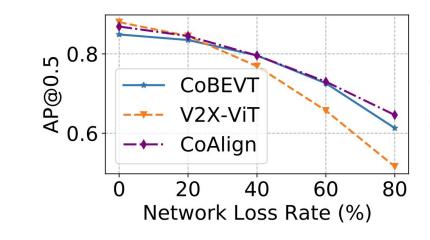
University of Michigan †General Motors Research & Development

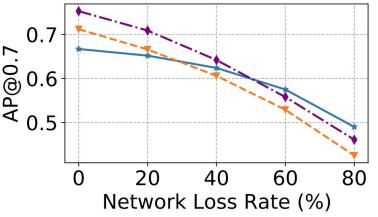


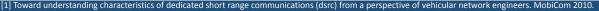

Background - Collaborative Perception

Limited sensing on occluded or far-away objects

Motivation - Practical Challenges in Collaborative Perception


- Imperfections in underlying system layers
 - Spatial misalignments occur due to <u>sensing errors</u> or dropped network packets
 - Temporal misalignments arise from <u>sensor asynchronization</u> and network delays





Challenge: Lossy V2X Network Transmission

Performance of existing collaborative perception methods drops significantly on V2V/V2X network packet loss

^[2] CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers, CoRL 22

^[3] V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer, ICCV 22

Related Work

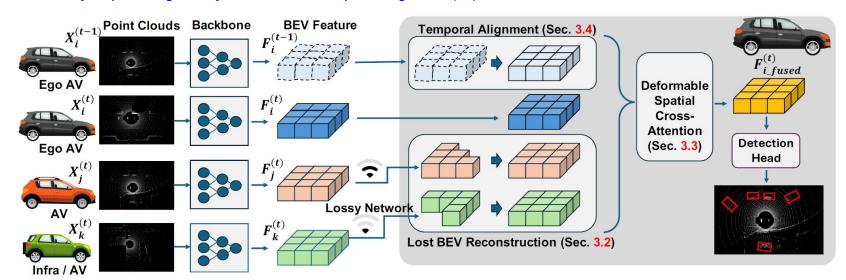
- Existing cooperative perception overlooks the synergy between different types of real-world dynamics
 - None of the existing work tackles <u>all 3 challenges at the same time</u>

Work	Sensing Errors	Sensor Asynchronization	Lossy V2X Network	Fusion Method	
OPV2V [1]	х	х	х	Intermediate	
Where2comm [2]	х	x x		Intermediate	
CoBEVT [3]	х	x x		Intermediate	
V2X-ViT [4]	✓	1	х	Intermediate	
RAO [5]	х	1	х	Early	
Co-Align [6]	1	x x		Intermediate	
LCRN [7]	х	х	1	Intermediate	

^[1] OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication, ICRA 21

^[2] Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps, Neurips 2022

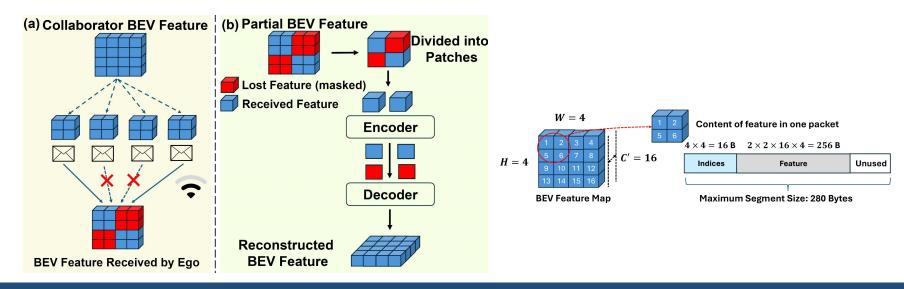
^[3] CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers, CoRL 22

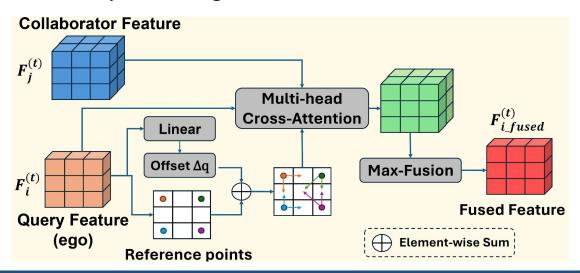

^[4] V2X-VIT: Vehicle-to-Everything Cooperative Perception with Vision Transformer, ICCV 22 [5] Robust Real-time Multi-vehicle Collaboration on Asynchronous Sensors, MobiCom 23

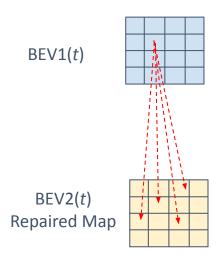
^[6] Co-Align: Robust Collaborative 3D Object Detection in Presence of Pose Errors, ICRA 23

^[7] Learning for Vehicle-to-Vehicle Cooperative Perception under Lossy Communication, IEEE IV 23

Solution Framework

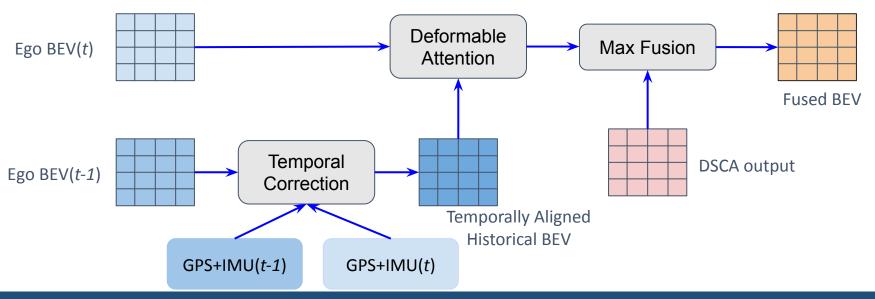

- **SCORPION:** Spatial-temporal **Co**llaborative **P**erception model on lossy **N**etwork
 - An **end-to-end Intermediate-fusion model** to address and compensate for the imperfections in system layers
 - [Lossy V2X Network] Lost BEV Reconstruction (L-BEV-R)
 - [Spatial Alignment] Deformable Spatial Cross Attention (DSCA)
 - [Temporal Alignment] Historical BEV Temporal Alignment (TA)


Lost BEV Feature Reconstruction (L-BEV-R)


- The received map has feature indices lost due to lossy V2X network
- The underlying MAE Encoder [1] processed the patches, and decoder recover the original BEV feature

Deformable Spatial Cross Attention (DSCA)

- Instead of a standard attention mechanism, DSCA interacts with a <u>learned set of offset points</u> across all vehicles' BEV maps, considering potential spatial misalignments
 - Benefits: DSCA allows the model to look for semantic information in areas that may be misaligned due to localization errors.

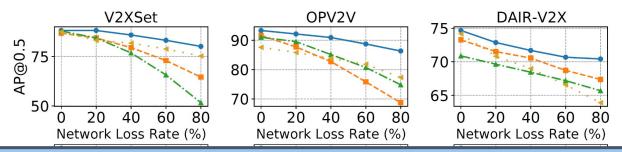


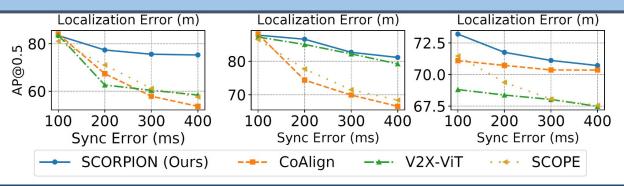
Historical BEV Temporal Alignment (TA)

- The TA module incorporates historical BEV features to address temporal misalignment
- **Benefits**: By spatially wrapping the historical BEV map from the ego-vehicle using measured pose (GPS/IMU), the model can align temporal information.

Evaluation

- Dataset: V2XSet [1], OPV2V [2] and DAIR-V2X [3]
- <u>Perfect environment</u> setup: no net loss, localization error or sync error
- SCORPION achieves SOTA performance

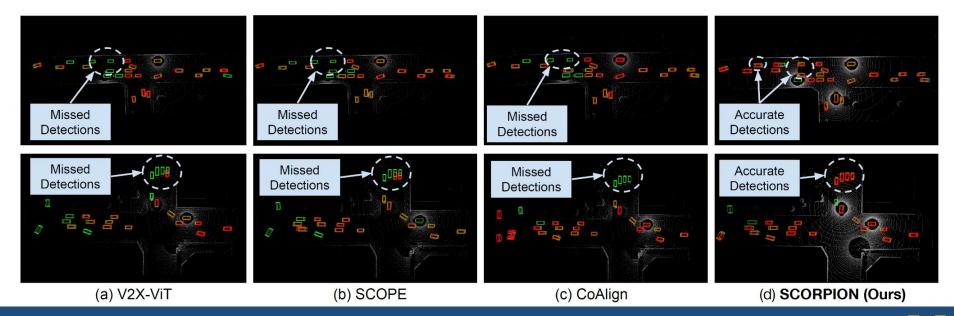

Model	V2XSet		OPV2V		DAIR-V2X	
Wiodei	AP0.5	AP0.7	AP0.5	AP0.7	AP0.5	AP0.7
No Fusion	65.73	52.57	69.38	56.40	63.04	47.39
V2VNet [8]	87.82	74.28	86.76	73.38	65.09	48.18
F-Cooper [10]	82.82	69.38	89.22	79.66	70.54	52.21
AttFuse [7]	81.70	66.24	88.54	72.91	68.02	48.40
CoBEVT [1]	81.00	65.06	88.99	72.80	67.61	55.51
V2X-ViT [2]	82.32	71.21	86.74	75.70	70.87	54.35
CoAlign [5]	86.90	75.31	91.60	82.30	74.02	56.81
SCOPE [13]	87.55	75.67	89.60	80.71	74.15	56.52
SCORPION	88.32	77.78	93.10	85.10	74.65	56.76


^[1] V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer, ECCV 22

^[2] OPV2V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication, ICRA 21

Performance under Noise Environment

SCORPION outperforms baselines under various levels of network loss & loc/sync errors

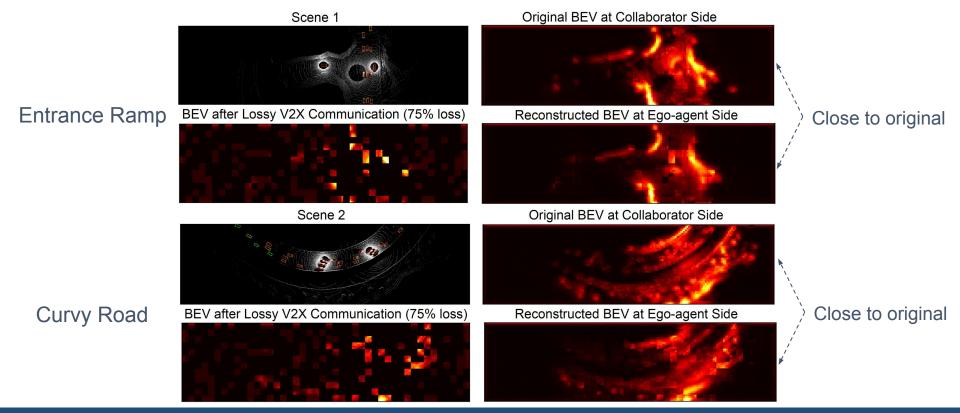


Visualization of Detection Results

- Test on environment w/ coexistence of net loss, loc err and sync err

Green: Ground Truth Red: Prediction

Thank You!



Our Team

Visualization of Reconstructed BEV map

SCORPION Demo Video

