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Abstract— Nowadays, out-of-order pipeline processors with 

advanced features outperform pipeline processors in many 
aspects. However, there are too many advanced features to 
consider when designing an out-of-order processor and the 
performance improvement of these features is not analyzed 
thoroughly. This report describes an out-of-order processor 
design with several advanced features. The processor is a two-way 
superscalar processor with early branch resolution. The processor 
consists of different individual modules and a main pipeline 
module using a hardware description language (HDL) named 
SystemVerilog. The processor achieves about 160% speedup 
compared to a traditional 5 stage in-order pipeline processor in 
various test conditions.  
 

Index Terms—Processor design, Processor Architecture 
 

I. INTRODUCTION 
OMPUTER architecture is the foundation of designing 
computers. Computer architecture bridged the gap between 

electrical engineering and computer science, and it has always 
been a hot topic in both academic research and industry.  In this 
report, we demonstrate that our design of a two-way superscalar 
out-of-order processor with early branch resolution can achieve 
better performance by analyzing different metrics and 
comparing to the traditional design of a 5 stage in-order pipeline 
processor. 

In this report we propose a design of a pipelined processor 
for fast branch misprediction recovery and a superscalar width 
of two. High-frequency pipelined processors experience huge 
performance degradation under branch misprediction because 
branch misprediction exposes the long latency associated with 
instruction memory. And a superscalar processor can provide 
better instruction level parallelism (ILP), which means the 
processor can execute more than one instruction at a time and 
thus achieve a higher speed.  

The processor is based on RISC-V (RV32) instruction set 
architecture and is implemented in R10k algorithm [3] because 
of its elegance compared to other out-of-order algorithms. This 
processor is evaluated by mainly four metrics. They are 
relatively correct implementation of out-of-order processor, 
cycle per instruction (CPI), a good clock period and program 
completion time. In later sections, these metrics are calculated 
and analyzed to prove the efficiency of the processor design. 

II. PROJECT DESIGN 
The project is designed to implement a fully working 

processor with advanced features. We then analyze how these 
features help contribute to the processor’s performance 
enhancement. And if the advanced features do not provide the 
expected improvement, reasons need to be explained why the 
expected performance improvement is unmet.  

Among various advanced features, our team chose to 
implement mainly three large categories, with several specific 
features in each category. The first category is fast branch 
misprediction recovery, which includes early branch resolution 
(also known as branch stack). The second category is novel 
memory access schemes such as non-blocking cache, load-store 
queue and prefetching. The last category is better instruction 
level parallelism by expanding superscalar width. 

This section will begin by describing the overall system 
architecture of the processor, and then explain in detail how 
each feature works and why it is beneficial. 

A. System Architecture 

 
Figure 1. High Level Design Diagram  

 
The processor is based on the R10k algorithm, which is an 

out-of-order algorithm extending Tomasulo’s algorithm. The 
processor has 6 stages, fetch/prefetch (Figure 1), decode, 
dispatch (figure 1), issue, execution and retire. Similar to a 
typical processor, the processor has memory/cache interface 
(green color in Figure 1), register files and map table (blue color 
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in Figure 1) and function units (red color in Figure 1). What is 
different in our design is the Branch Register Alias Table 
(BRAT, Figure 1). BRAT serves as an important structure to 
help the processor recover quickly from branch misprediction. 
More on this will be discussed in part B.  

B. Early Branch Resolution 
The reorder buffer (ROB, Figure 1) and Register Alias Table 

(RAT, Figure 1), also known as Map Table, are the vital 
structures to understand the benefit of early branch resolution. 
In an out-of-order processor, instructions are dispatched and 
committed in-order but executed out-of-order. ROB is a 
structure that records the instructions at in-order dispatch time 
and commits the instructions in-order after the out-of-order 
execution is finished. Map tables map architecture registers 
(produced by compiler) to physical registers in the hardware. It 
provides register renaming to modify the two instructions that 
have the same destination register to two different hardware 
components so that they can be executed in parallel. 

For a typical out-of-order pipeline processor, branch 
misprediction signal is broadcasted when a branch retires from 
the ROB (Figure 1). And the entire ROB is flushed to empty 
because any instruction in the ROB is on the wrong path. This 
may cause the processor essentially doing nothing since the 
executed instructions after the mispredicted will be squashed 
afterwards. In ideal scenarios, we want branch misprediction 
signals to be sent as long as the branch instruction is calculated 
by the function units so that the processor can squash 
unnecessary instructions and recover to the correct program 
path as soon as possible. And early branch resolution achieves 
this property by introducing BRAT checkpoints (Figure 2a). 

BRAT checkpoint [2] has the same structure as a map table, 
and only functions when branch mispredict happens. When a 
branch instruction gets dispatched at the dispatch stage, one 
BRAT takes a checkpoint of the map table by copying all of its 
contents. When later the branch instruction is resolved by the 
function units and is a misprediction, the processor will revert 
the state to the corresponding BRAT checkpoint by copying 
back the contents in the BRAT since that state is the latest time 
where a misprediction has not happened. An analogy to this is 
to avoid screwing up drawing a graph, you first make a copy of 
the current drawing state and continue drawing. If at any time 
you find it unsatisfactory, you can go back to the prepared copy 
to redraw the graph.  

 
Figure 2. BRAT Checkpoint to Handle Misprediction [2] 

 
It is possible that there are multiple branch instructions 

currently in the processor. With only one BRAT, one branch 

instruction can get dispatched only if there are no dispatched 
branch instructions before it or the previous dispatched branch 
instruction retires. This will make the most part of the processor 
unavailable which is known as structural hazard. To address 
this problem, BRAT checkpoint stack (Figure 2b) is used. 
BRAT stack contains multiple BRATs, and each of the BRAT 
is a checkpoint of the map table. When a misprediction signal 
asserts, the checkpoint stack outputs the corresponding 
checkpoint to recover for the processor. 

C. Non-blocking Cache, Load-Store Queue and Prefetching 
A processor communicates with memory to load and store 

data that cannot be filled in the registers. However, memory 
latency is usually ten times larger than the processor clock 
period, which means after querying the memory, the processor 
will wait about 10 cycles to get back the data. To mitigate this 
problem, cache is used to store some frequently visited data in 
the processor. When the memory address requested by the 
processor core is in the cache, the cache can directly give it back. 
This scene is called a cache hit. 

However, not every data access will result in a cache hit. 
When the address requested by the processor is not in the cache, 
the cache is responsible to bring the data from the memory. This 
scenario is called a cache miss. Traditionally if the cache 
encounters a cache miss, it cannot accept another query from 
the processor core before the cache miss is fully resolved. A 
cache with this property is called blocking cache. Blocking 
cache sometimes creates the head of line (HOL) problem where 
a cache miss could block the later cache hit for a long time. 
Therefore, a non-blocking cache can accept query from the 
processor even if there is an unresolved cache miss in progress.  

Here we use a specific scenario to explain the benefits of 
having a non-blocking cache over a blocking cache. Consider 
the following memory accesses: {miss to cache block 1, miss to 
cache block 2, hit to a cache block}. Assuming the memory 
accesses are issued from left to right. Figure 3 shows the timing 
diagram of a blocking cache. The blocking cache uses 18 cycles 
of time to finish all of the three memory accesses. While a non-
blocking cache takes only 12 cycles of time to resolve all of the 
accesses (Figure 4). The performance improvement is 33% in 
this case.  

 

 
Figure 3. Performance of a Blocking Cache for {miss1, miss2, hit} Sequence 
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Figure 4. Performance of a Non-blocking Cache for {miss1, miss2, hit} 
Sequence 
 

Our design includes a non-blocking data cache. In order to 
implement a non-blocking cache, a new structure named Miss 
Status Handling Register (MSHR, Figure 5) is needed. A 
MSHR keeps track of the current cache miss requests and 
updates correspondingly when memory gives the data back. A 
queue of MSHR is needed to take down the information of 
multiple cache misses. The size of the queue is parameterizable 
so that the performance improvement of different capacity of 
non-blocking cache can be compared and analyzed. There will 
be experiment outputs on this in the analysis section. 
 

 
Figure 5. Block Diagram of a Non-blocking Cache 

 
Before the cache receiving any load or store requests, the 

processor needs to make sure these memory operations are 
ready to be sent. Moreover, sending loads out-of-order is 
preferred because there might be dependent instructions on 
such loads waiting in the pipeline. 

The processor uses a double-list structure to manipulate load 
and store operations separately (Figure 6). When a store 
instruction gets dispatched, it goes to the end of the store queue. 
Later load operations memorize the stores that are in front of 
them by taking down the tail of the store queue. This 
information is called the age of a load. When a load finds that 
all of the previous stores are resolved, it will transfer to the 
ready state and sent to the data cache. If it happens that one or 
more of the previous stores have the same memory address as 
the load operation. The load can take the latest store value and 
get back to the processor immediately. This scheme is called 

store-to-load forwarding.  
 

 
Figure 6. Load-Store Queue Structure 

 
The last advanced memory feature included in the processor 

is prefetching. The idea of having a prefetching unit is 
straightforward. If the processor asks for one instruction, it is 
likely that the processor will ask for several instructions after 
that as well. Instead of waiting for the fetching unit of the 
processor to ask, the prefetching unit will query the instruction 
memory beforehand. An analogy to this is that say you are 
writing an article and you know that it’s likely the article will 
be multiple pages. You then prepare several pages of paper and 
start writing on one of them instead of grabbing a new page 
after you finish one.  

 
Figure 7. Block Diagram of Prefetching Unit 

 
The prefetching unit contains a stream buffer (Figure 7) 
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which is essentially a small cache to store prefetched 
instructions. When the processor requests for an instruction, the 
requests go through the instruction cache and stream buffer. If 
it finds the corresponding instruction, it can pass the instruction 
down to the pipeline stages directly. A comparison analysis of 
the processor with (w/) prefetching unit and without (w/o) 
prefetching unit is performed in the analysis section. 

D. Superscalar and Instruction Level Parallelism 
Non-dependent instructions in a program can be executed in 

parallel. Doing so will raise the full speed of the processor and 
result in a faster program completion time. This notion is called 
instruction level parallelism (ILP). To extend the full speed of 
the processor, superscalar is implemented to take advantage of 
instruction level parallelism. 

 

 
Figure 8. A Conceptual Figure of Superscalar Execution [1] 

 
Our processor design is a two-way superscalar design, which 

indicates that at most two instructions can enter into each stage. 
Figure 8 shows a conceptual flow diagram of the superscalar 
out-of-order design. Multiple instructions (in our case, two) can 
get dispatched and calculated at the same time, ideally resulting 
in a 100% speedup.  

III. EVALUATION & OUTCOMES 
The evaluation policy of the processor conforms with the 

metrics discussed in the introduction section. There are 30 
benchmark test programs for testing the correctness and CPI of 
the processor. The output from the processor implementation is 
compared against an instructor solution of an in-order pipeline 
processor.  

A. Correct Implementation 
For a correct implementation, the programs should be 

successfully executed in our out-of-order processor and 
produce the same program state and result as an in-order 
pipeline processor. Testing of correctness is done using a bash 
script which compares the outputs from the out-of-order 
processor with the instruction solutions. Experiments on local 
machines indicate all tests are successfully passed. 

B. Cycle Per Instruction 
Cycle per instruction (CPI) is a typical metric that evaluates 

the performance of a processor. A smaller CPI indicates that the 
time for a processor to execute one instruction is less. Table I 
shows the CPI statistic for all of the 30 test programs. Most of 
the programs finish with a CPI between 1 to 2.8. For programs 
that can largely be executed in parallel like rv32_copy_long, the 
CPI is smaller and for programs that are non-predictable, the 
CPI is as large as 5. The average CPI of our processor is 2.420. 

 

  
C. Clock Period 

The clock period is verified using a synthesis tool named 
Synopsis Tool. The minimum working clock period for this 
processor is 10.6 ns, indicating that the processor has a 100 
MHz frequency. The success of synthesis is checked through 
the Slack signal generated by the synthesis report (Figure 9).  

 

 
Figure 9. Synthesis Report of Clock Period 10.6 ns 

D. Program Completion Time 
Although CPI and clock period are two generic metrics that 

people use to evaluate the performance of a processor, a small 
CPI or a small clock period does not definitely imply that the 
processor is good. Program completion time, however, is the 
truth of a processor’s performance on a particular test program. 
Program completion time is calculated using Iron Law by 
multiplying the CPI, clock period with instruction numbers. 
Table II shows the program completion time (in milliseconds) 
of all 30 test programs. For a program with larger CPI, it does 
not imply that the program will have a longer execution time 
because its instruction number might be small (Table II). Since 
the programs vary largely in instruction numbers, calculating 
average program completion time alone is useless, so average 
program completion time is omitted.  

TABLE I 
CPI (CYCLES/INSTRUCTION) FOR TEST PROGRAMS 

Program CPI Program CPI 

rv32_mult 1.911 bfs 2.773 
rv32_parallel 1.600 basic_malloc 3.458 
rv32_copy 2.113 insertionsort 2.469 
rv32_copy_long 1.094 dft 2.143 
rv32_fib_long 1.136 fc_forward 2.409 
rv32_fib 1.773 alexnet 2.090 
rv32_saxpy 2.839 backtrack 2.878 
rv32_evens_long 1.453 matrix_mult_rec 3.944 
rv32_evens 2.794 omegalul 2.635 
rv32_btest1 5.277 priority_queue 3.490 
rv32_btest2 5.262 quicksort 2.373 
rv32_insertion 1.538 sort_search 2.025 
mult_no_lsq 2.092 outer_product 1.478 
sampler 2.752 graph 3.114 
rv32_fib_rec 2.025 mergesort 2.686 
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IV. ANALYSIS 
In this section, we analyze the performance improvement 

over different advanced features and the reasons for finalizing 
the parameters for the pipeline processor. 

A. Non-blocking Cache vs. Blocking Cache 
The average CPI of the processor with a blocking data cache 

is 3.11 while the average CPI of the processor with a non-
blocking data cache is only 2.42. The CPI improvement of 
having a blocking cache is 22%. For all of the 30 test programs, 
having a non-blocking cache with MSHR size 4 will result in a 
better CPI than using a blocking cache (Figure 10). 

 

 
Figure 10. CPI Comparison of Blocking Cache and Non-blocking Cache 
 
However, we didn’t find much further performance 

improvement by increasing the MSHR size. Increasing the 
MSHR from size 4 to size 8 only gives us about 0.1% CPI 
improvement. This is normal because for a processor with ROB 
size 32, the scenario that over 4 cache misses exist at the same 
time is very rare. Therefore, we finalize the MSHR size to be 4 
to shoot for a smaller synthesis clock period. 

B. Optimal BRAT Size 
Early branch resolution is probably the most important 

feature of this out-of-order processor. Unfortunately, because 
early branch resolution’s implementation details vary largely 

from traditional way which resolve branch misprediction at 
instruction retirement, we are not able to keep two copies of the 
scheme and compare the performance improvement of full 
early branch resolution with a processor that does not 
implement early branch resolution. With simple qualitative 
analysis, the processor starts fetching and prefetching new PCs 
as soon as the CDB broadcasts the branch misprediction signal 
and other structures will squash the instructions on the wrong 
path, this is inherently better than resolving the branch 
misprediction at the head of the ROB. Therefore, having early 
branch resolution is strictly better than no early branch 
resolution for most of the time (except for when the BRAT 
stack is full, which is very rare). 

Although directly comparing the effect of early branch 
resolution is not feasible, finding a suitable BRAT size for 
optimal CPI is worth analyzing. 

 

 
Figure 11. CPI of different size BRATs 

 
For programs in which branch instructions are dense or close 

to each other (e.g. betst1, rs32_insertion and bfs), BRAT size 2 
is too small and will experience performance degradation 
(Figure 11). After switching to BRAT size 4, the overall CPI 
improvement is about 12.94% (Figure 11).  

Also notice that for small test programs such as rv32_parallel 
and rv32_copy, having a smaller BRAT size of 2 will even 
produce a better CPI than using a large BRAT. This is probably 
because the branch predictor behaves badly because the 
predictor is not warmed up. And stall to wait for branch 
instructions to resolve are actually better than going on and 
squashing everything later.  

The early branch resolution doesn’t provide the intended 
performance improvement as we expected. Part of the reason 
might be on the branch predictor side. A too good or too bad 
branch predictor will influence the early branch resolutions 
performance either by there are no mispredicted branches or 
stalling is even better when there are too many mispredicted 
branches. Analysis of branch prediction is in section C. 

C. Predictor Accuracy and Predictor Size 
Branch prediction plays an important role in total 

performance as a misprediction can waste a lot of efforts. To 
better account for the early branch resolution feature, we dig 
further into the branch predictor and analyze the tradeoff and 
potential problems in the branch predictor performance and its 

TABLE II 
PROGRAM COMPLETION TIME FOR TEST PROGRAMS 

Program Time (ms) Program Time (ms) 

rv32_mult 0.006 bfs 0.101 
rv32_parallel 0.003 basic_malloc 0.034 
rv32_copy 0.007 insertionsort 1.940 
rv32_copy_long 0.003 dft 1.304 
rv32_fib_long 0.008 fc_forward 0.016 
rv32_fib 0.003 alexnet 4.565 
rv32_saxpy 0.006 backtrack 0.217 
rv32_evens_long 0.005 matrix_mult_rec 0.876 
rv32_evens 0.003 omegalul 0.002 
rv32_btest1 0.013 priority_queue 0.053 
rv32_btest2 0.025 quicksort 0.674 
rv32_insertion 0.009 sort_search 2.426 
mult_no_lsq 0.006 outer_product 6.086 
sampler 0.003 graph 0.358 
rv32_fib_rec 0.257 mergesort 0.265 
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design problems. 
Branch Target Buffer (BTB) stores the address for branch 

instructions and allows the processor to identify the fetching 
program counter corresponding to a branch instruction and its 
target address. A local history predictor makes use of the branch 
position in the program to make predictions. Local History 
Table (LHT) contains the branch information of the last several 
bits of the program counter and Pattern History Table (PHT) 
contains the 2-state predictor (00, 01 for not taken and 10, 11 
for taken). 

The potential values for BTB size and branch history table 
size are 8, 16 and 32 while for pattern history table size are 8 
and 16. 

However, adjusting these three parameters doesn’t greatly 
affect the CPI of the processor. The CPI change is in magnitude 
of 0.01 (Figure 12). By calculating the average CPI among all 
test cases, the best average CPI is 2.52, achieved by the setup 
of 8-entry BTB, 16-entry BHT and 8-entry PHT, which is 
used as the final parameter for the branch predictor in the 
pipeline processor. 

 

 
Figure 12.  Average CPI of different size BTBs and Local Predictors 

 
Meanwhile, the actual accuracy of prediction our design 

obtained is also an interesting factor. The total prediction 
accuracy for each setup is derived along with the CPI 
information (Figure 13). 

 

 
Figure 13. Average accuracy of different size BTBs and Local Predictors 

 
The prediction rate is surprisingly decreased per increasing 

size. The best accuracy is 68.36% from 8-entry BTB, 8-entry 
BHT and 8-entry PHT. However, this result points out an 
unexpected trend that CPI is not affected very much while the 
accuracy is dropping as the size grows. So, a new set of data is 
added to fix all variables to be 4-entry. Since it has the lowest 
CPI and a lower accuracy, the optimal size is set as: 8-entry 
BTB, 16-entry BHT and 8-entry PHT. 

However, we notice that some test cases have very low 
accuracy (Figure 14). For those with small instruction numbers, 
it might be due to cold start, where most branches are executed 
once or twice. On the other hand, there are test cases with large 
amounts of instructions. For those with low accuracy through 
all setups, like rc32_fib_rec, this is mainly because we are 
executing a recursive algorithm, which is full of function calls 
and each return address is different. Therefore, the address of 
an unconditional jump representing a return may never be 
correctly predicted. Meanwhile, there are test cases with low 
accuracy for large predictors but high accuracy for smaller ones, 
like insertionsort and matrix_mult_rec. Local predictors with 
small BHT and BTB somewhat degenerate to global predictors. 
So, for test cases with chains of branches, they might work 
much better (Figure 14). 

 
 

 
Figure 14. Accuracy of Different Size BTBs and Local Predictors 

 
The branch predictor is not very ideal in this processor. Due 

to lack of time, a more sophisticated branch predictor is not 
implemented. A more complex predictor such as a tournament 
branch predictor or a return call stack can outperform a single 
local branch predictor for sure. With a better branch predictor, 
the performance improvement of having early branch resolution 
in the processor will be better.  

D. Performance Improvement of Different Prefetching Size 
Instruction prefetching counts as an important factor to 

improve processor’s performance, especially at the condition 
where memory latency is about 10 cycles. We take down the 
CPI information before adding the prefetching module and 
analyze the performance improvement with different 
prefetching sizes of 4, 8 and 16.  

Figure 15 indicates that adding a prefetching unit to the 
pipeline can largely improve the performance of our processor. 
To be more specific, going from no prefetching to prefetching 
4 instructions results in an average CPI reduction of 33.7%! 
Enlarge the stream buffer in the prefetcher to size 8 can further 
improve the performance of 8.01%. 
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Figure 15. No Prefetching CPI vs. Different Prefetching Size CPI 

  
Using a prefetching of size 16 actually hurt performance a 

little bit, as shown in Figure 3. While prefetching stream buffer 
size 16 gives us the best CPI 0.86 on test rv32_copy_long and 
CPI 0.95 on rv32_fib_long, notice that it actually hurts the 
processor’s performance on some large C testcases such as 
insertion sort and quicksort. This is probably because the 
prefetching unit is doing extra work to fetch unnecessary 
instructions on mispredicted branches. Above all, prefetching 
size of 8 is chosen ultimately since it improves the overall CPI. 

E. Cache Hit Rate & Load-Store Forwarding in MSHR 
Conventional load to store forwarding is implemented in the 

processor. Except for that, a tiny trick feature is added to the 
non-blocking cache. The data that’s in the MSHR but not yet 
committed to memory can be forward to later load operations 
as well. Since the point of load-to-store forwarding is to 
perform load operations quickly, we combine the cache hit and 
forwarding from MSHR as our total cache hit rate because these 
load operations can finish in just one extra cycle even if they 
are not forwarded from the store queue directly. Surprisingly 
this mechanism works pretty well and gives back a good cache 
hit rate of 93.6% with only a 32 * 8 Byte direct mapped cache 
(Figure 16). 

 

 
Figure 16. Data Cache Hit Rate on Different Test Programs 

 

F. Further Refinement on Reservation Station Size 
Lastly, reservation station size (RS) is analyzed to address 

the problem that RS might be full to create structural hazard, 
causing the processor to stall for too long. A small RS will more 
easily be filled up, so in theory a larger RS will result in fewer 
stalls and thus better performance. RS size of 2, 4, 8 and 16 is 
tested and the corresponding CPI is compared (Figure 17). 

 

 
Figure 17. CPI with different RS sizes 

 
For most test programs the CPI decreases with the size of RS. 

Note that there is a strange point at test program 
matrix_mult_rec. The program is a large matrix multiplication 
program written in recursion and requires a lot of store 
operations and incurs a lot of store misses in the data cache. 
Increasing RS sizes does not help in this case because nearly all 
of the stalling comes from the store queue. 

G. Overall Performance Against In-Order Pipeline 
To evaluate the improvement and effectiveness of the 

designed processor. A detailed comparison with the five-stage 
pipelined processor is performed thoroughly. All the 30 
testcases are run on the provided 5 stage pipelined processor. 
The final metric used here is program completion time, which 
is the most suitable metric here to evaluate the performance 
improvement. Because the original five-stage pipeline 
processor omits the actual memory latency, 30ns memory 
latency is used for memory access in only one cycle for the in-
order pipeline processor. 

 

 

TABLE III 
PROGRAM COMPLETION TIME COMPARISON OF OUT-OF-ORDER PIPELINE 

PROCESSOR WITH FIVE-STAGE IN-ORDER PIPELINE PROCESSOR 

Program Out-of-Order 
Completion Time (ms) 

In-Order  
Completion Time (ms) 

rv32_mult 0.006 0.013 
rv32_parallel 0.003 0.008 
rv32_copy 0.007 0.007 
rv32_copy_long 0.003 0.021 
rv32_fib_long 0.008 0.022 
rv32_fib 0.003 0.007 
rv32_saxpy 0.006 0.010 
rv32_evens_long 0.005 0.013 
rv32_evens 0.003 0.005 
rv32_btest1 0.013 0.013 
rv32_btest2 0.025 0.025 
rv32_insertion 0.009 0.030 
mult_no_lsq 0.006 0.010 
sampler 0.003 0.005 
rv32_fib_rec 0.257 0.742 
bfs 0.101 0.182 
basic_malloc 0.034 0.054 
insertionsort 1.940 4.766 
dft 1.304 2.743 
fc_forward 0.016 0.029 
alexnet 4.565 10.667 
backtrack 0.217 0.392 
matrix_mult_rec 0.877 1.256 
omegalul 0.002 0.003 
priority_queue 0.053 0.084 
quicksort 0.674 1.544 
outer_product 2.426 7.121 
graph 0.358 0.625 
mergesort 0.624 0.498 
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Figure 18 illustrates the program completion time 
improvement of large test programs. Small testcases are omitted 
in the figure because of scale problems since their completion 
time is too small to show on the graph. Detailed completion 
time is shown in Table III. The average program completion 
time for our out-of-order processor is 0.643 ms and the average 
program completion time for a five-stage pipeline processor is 
1.665 ms. The performance is inversely proportional to the 
completion time. Thus, the performance of the two-way 
superscalar out-of-order processor is 2.590 times the 
performance of an in-order pipeline processor, which indicates 
a 159% performance improvement.  

 
 

 
Figure 18. Program Completion Time Improvement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
We have successfully implemented a two-way superscalar 

out-of-order RISC-V processor using the R10k algorithm. The 
processor synthesis in a clock period of 10.6 ns. This report 
provides a detailed analysis of the processor’s advanced 
features and their effectiveness. The processor is fully 
integrated, tested in SystemVerilog HDL. We demonstrate our 
processor is a fully working prototype of an out-of-order 
processor design with early branch resolution and a superscalar 
width of two. 
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