
UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

1

Abstract— Nowadays, out-of-order pipeline processors with

advanced features outperform pipeline processors in many
aspects. However, there are too many advanced features to
consider when designing an out-of-order processor and the
performance improvement of these features is not analyzed
thoroughly. This report describes an out-of-order processor
design with several advanced features. The processor is a two-way
superscalar processor with early branch resolution. The processor
consists of different individual modules and a main pipeline
module using a hardware description language (HDL) named
SystemVerilog. The processor achieves about 160% speedup
compared to a traditional 5 stage in-order pipeline processor in
various test conditions.

Index Terms—Processor design, Processor Architecture

I. INTRODUCTION
OMPUTER architecture is the foundation of designing
computers. Computer architecture bridged the gap between

electrical engineering and computer science, and it has always
been a hot topic in both academic research and industry. In this
report, we demonstrate that our design of a two-way superscalar
out-of-order processor with early branch resolution can achieve
better performance by analyzing different metrics and
comparing to the traditional design of a 5 stage in-order pipeline
processor.

In this report we propose a design of a pipelined processor
for fast branch misprediction recovery and a superscalar width
of two. High-frequency pipelined processors experience huge
performance degradation under branch misprediction because
branch misprediction exposes the long latency associated with
instruction memory. And a superscalar processor can provide
better instruction level parallelism (ILP), which means the
processor can execute more than one instruction at a time and
thus achieve a higher speed.

The processor is based on RISC-V (RV32) instruction set
architecture and is implemented in R10k algorithm [3] because
of its elegance compared to other out-of-order algorithms. This
processor is evaluated by mainly four metrics. They are
relatively correct implementation of out-of-order processor,
cycle per instruction (CPI), a good clock period and program
completion time. In later sections, these metrics are calculated
and analyzed to prove the efficiency of the processor design.

II. PROJECT DESIGN
The project is designed to implement a fully working

processor with advanced features. We then analyze how these
features help contribute to the processor’s performance
enhancement. And if the advanced features do not provide the
expected improvement, reasons need to be explained why the
expected performance improvement is unmet.

Among various advanced features, our team chose to
implement mainly three large categories, with several specific
features in each category. The first category is fast branch
misprediction recovery, which includes early branch resolution
(also known as branch stack). The second category is novel
memory access schemes such as non-blocking cache, load-store
queue and prefetching. The last category is better instruction
level parallelism by expanding superscalar width.

This section will begin by describing the overall system
architecture of the processor, and then explain in detail how
each feature works and why it is beneficial.

A. System Architecture

Figure 1. High Level Design Diagram

The processor is based on the R10k algorithm, which is an

out-of-order algorithm extending Tomasulo’s algorithm. The
processor has 6 stages, fetch/prefetch (Figure 1), decode,
dispatch (figure 1), issue, execution and retire. Similar to a
typical processor, the processor has memory/cache interface
(green color in Figure 1), register files and map table (blue color

A Two-way Superscalar Processor with
Out-of-Order Execution

and Early Branch Resolution
Ruiyang Zhu, Meitang Li, Tianrong Zhang, Yuan Shen, Kangjia Cai

C

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

2

in Figure 1) and function units (red color in Figure 1). What is
different in our design is the Branch Register Alias Table
(BRAT, Figure 1). BRAT serves as an important structure to
help the processor recover quickly from branch misprediction.
More on this will be discussed in part B.

B. Early Branch Resolution
The reorder buffer (ROB, Figure 1) and Register Alias Table

(RAT, Figure 1), also known as Map Table, are the vital
structures to understand the benefit of early branch resolution.
In an out-of-order processor, instructions are dispatched and
committed in-order but executed out-of-order. ROB is a
structure that records the instructions at in-order dispatch time
and commits the instructions in-order after the out-of-order
execution is finished. Map tables map architecture registers
(produced by compiler) to physical registers in the hardware. It
provides register renaming to modify the two instructions that
have the same destination register to two different hardware
components so that they can be executed in parallel.

For a typical out-of-order pipeline processor, branch
misprediction signal is broadcasted when a branch retires from
the ROB (Figure 1). And the entire ROB is flushed to empty
because any instruction in the ROB is on the wrong path. This
may cause the processor essentially doing nothing since the
executed instructions after the mispredicted will be squashed
afterwards. In ideal scenarios, we want branch misprediction
signals to be sent as long as the branch instruction is calculated
by the function units so that the processor can squash
unnecessary instructions and recover to the correct program
path as soon as possible. And early branch resolution achieves
this property by introducing BRAT checkpoints (Figure 2a).

BRAT checkpoint [2] has the same structure as a map table,
and only functions when branch mispredict happens. When a
branch instruction gets dispatched at the dispatch stage, one
BRAT takes a checkpoint of the map table by copying all of its
contents. When later the branch instruction is resolved by the
function units and is a misprediction, the processor will revert
the state to the corresponding BRAT checkpoint by copying
back the contents in the BRAT since that state is the latest time
where a misprediction has not happened. An analogy to this is
to avoid screwing up drawing a graph, you first make a copy of
the current drawing state and continue drawing. If at any time
you find it unsatisfactory, you can go back to the prepared copy
to redraw the graph.

Figure 2. BRAT Checkpoint to Handle Misprediction [2]

It is possible that there are multiple branch instructions

currently in the processor. With only one BRAT, one branch

instruction can get dispatched only if there are no dispatched
branch instructions before it or the previous dispatched branch
instruction retires. This will make the most part of the processor
unavailable which is known as structural hazard. To address
this problem, BRAT checkpoint stack (Figure 2b) is used.
BRAT stack contains multiple BRATs, and each of the BRAT
is a checkpoint of the map table. When a misprediction signal
asserts, the checkpoint stack outputs the corresponding
checkpoint to recover for the processor.

C. Non-blocking Cache, Load-Store Queue and Prefetching
A processor communicates with memory to load and store

data that cannot be filled in the registers. However, memory
latency is usually ten times larger than the processor clock
period, which means after querying the memory, the processor
will wait about 10 cycles to get back the data. To mitigate this
problem, cache is used to store some frequently visited data in
the processor. When the memory address requested by the
processor core is in the cache, the cache can directly give it back.
This scene is called a cache hit.

However, not every data access will result in a cache hit.
When the address requested by the processor is not in the cache,
the cache is responsible to bring the data from the memory. This
scenario is called a cache miss. Traditionally if the cache
encounters a cache miss, it cannot accept another query from
the processor core before the cache miss is fully resolved. A
cache with this property is called blocking cache. Blocking
cache sometimes creates the head of line (HOL) problem where
a cache miss could block the later cache hit for a long time.
Therefore, a non-blocking cache can accept query from the
processor even if there is an unresolved cache miss in progress.

Here we use a specific scenario to explain the benefits of
having a non-blocking cache over a blocking cache. Consider
the following memory accesses: {miss to cache block 1, miss to
cache block 2, hit to a cache block}. Assuming the memory
accesses are issued from left to right. Figure 3 shows the timing
diagram of a blocking cache. The blocking cache uses 18 cycles
of time to finish all of the three memory accesses. While a non-
blocking cache takes only 12 cycles of time to resolve all of the
accesses (Figure 4). The performance improvement is 33% in
this case.

Figure 3. Performance of a Blocking Cache for {miss1, miss2, hit} Sequence

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

3

Figure 4. Performance of a Non-blocking Cache for {miss1, miss2, hit}
Sequence

Our design includes a non-blocking data cache. In order to
implement a non-blocking cache, a new structure named Miss
Status Handling Register (MSHR, Figure 5) is needed. A
MSHR keeps track of the current cache miss requests and
updates correspondingly when memory gives the data back. A
queue of MSHR is needed to take down the information of
multiple cache misses. The size of the queue is parameterizable
so that the performance improvement of different capacity of
non-blocking cache can be compared and analyzed. There will
be experiment outputs on this in the analysis section.

Figure 5. Block Diagram of a Non-blocking Cache

Before the cache receiving any load or store requests, the

processor needs to make sure these memory operations are
ready to be sent. Moreover, sending loads out-of-order is
preferred because there might be dependent instructions on
such loads waiting in the pipeline.

The processor uses a double-list structure to manipulate load
and store operations separately (Figure 6). When a store
instruction gets dispatched, it goes to the end of the store queue.
Later load operations memorize the stores that are in front of
them by taking down the tail of the store queue. This
information is called the age of a load. When a load finds that
all of the previous stores are resolved, it will transfer to the
ready state and sent to the data cache. If it happens that one or
more of the previous stores have the same memory address as
the load operation. The load can take the latest store value and
get back to the processor immediately. This scheme is called

store-to-load forwarding.

Figure 6. Load-Store Queue Structure

The last advanced memory feature included in the processor

is prefetching. The idea of having a prefetching unit is
straightforward. If the processor asks for one instruction, it is
likely that the processor will ask for several instructions after
that as well. Instead of waiting for the fetching unit of the
processor to ask, the prefetching unit will query the instruction
memory beforehand. An analogy to this is that say you are
writing an article and you know that it’s likely the article will
be multiple pages. You then prepare several pages of paper and
start writing on one of them instead of grabbing a new page
after you finish one.

Figure 7. Block Diagram of Prefetching Unit

The prefetching unit contains a stream buffer (Figure 7)

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

4

which is essentially a small cache to store prefetched
instructions. When the processor requests for an instruction, the
requests go through the instruction cache and stream buffer. If
it finds the corresponding instruction, it can pass the instruction
down to the pipeline stages directly. A comparison analysis of
the processor with (w/) prefetching unit and without (w/o)
prefetching unit is performed in the analysis section.

D. Superscalar and Instruction Level Parallelism
Non-dependent instructions in a program can be executed in

parallel. Doing so will raise the full speed of the processor and
result in a faster program completion time. This notion is called
instruction level parallelism (ILP). To extend the full speed of
the processor, superscalar is implemented to take advantage of
instruction level parallelism.

Figure 8. A Conceptual Figure of Superscalar Execution [1]

Our processor design is a two-way superscalar design, which

indicates that at most two instructions can enter into each stage.
Figure 8 shows a conceptual flow diagram of the superscalar
out-of-order design. Multiple instructions (in our case, two) can
get dispatched and calculated at the same time, ideally resulting
in a 100% speedup.

III. EVALUATION & OUTCOMES
The evaluation policy of the processor conforms with the

metrics discussed in the introduction section. There are 30
benchmark test programs for testing the correctness and CPI of
the processor. The output from the processor implementation is
compared against an instructor solution of an in-order pipeline
processor.

A. Correct Implementation
For a correct implementation, the programs should be

successfully executed in our out-of-order processor and
produce the same program state and result as an in-order
pipeline processor. Testing of correctness is done using a bash
script which compares the outputs from the out-of-order
processor with the instruction solutions. Experiments on local
machines indicate all tests are successfully passed.

B. Cycle Per Instruction
Cycle per instruction (CPI) is a typical metric that evaluates

the performance of a processor. A smaller CPI indicates that the
time for a processor to execute one instruction is less. Table I
shows the CPI statistic for all of the 30 test programs. Most of
the programs finish with a CPI between 1 to 2.8. For programs
that can largely be executed in parallel like rv32_copy_long, the
CPI is smaller and for programs that are non-predictable, the
CPI is as large as 5. The average CPI of our processor is 2.420.

C. Clock Period

The clock period is verified using a synthesis tool named
Synopsis Tool. The minimum working clock period for this
processor is 10.6 ns, indicating that the processor has a 100
MHz frequency. The success of synthesis is checked through
the Slack signal generated by the synthesis report (Figure 9).

Figure 9. Synthesis Report of Clock Period 10.6 ns

D. Program Completion Time
Although CPI and clock period are two generic metrics that

people use to evaluate the performance of a processor, a small
CPI or a small clock period does not definitely imply that the
processor is good. Program completion time, however, is the
truth of a processor’s performance on a particular test program.
Program completion time is calculated using Iron Law by
multiplying the CPI, clock period with instruction numbers.
Table II shows the program completion time (in milliseconds)
of all 30 test programs. For a program with larger CPI, it does
not imply that the program will have a longer execution time
because its instruction number might be small (Table II). Since
the programs vary largely in instruction numbers, calculating
average program completion time alone is useless, so average
program completion time is omitted.

TABLE I
CPI (CYCLES/INSTRUCTION) FOR TEST PROGRAMS

Program CPI Program CPI

rv32_mult 1.911 bfs 2.773
rv32_parallel 1.600 basic_malloc 3.458
rv32_copy 2.113 insertionsort 2.469
rv32_copy_long 1.094 dft 2.143
rv32_fib_long 1.136 fc_forward 2.409
rv32_fib 1.773 alexnet 2.090
rv32_saxpy 2.839 backtrack 2.878
rv32_evens_long 1.453 matrix_mult_rec 3.944
rv32_evens 2.794 omegalul 2.635
rv32_btest1 5.277 priority_queue 3.490
rv32_btest2 5.262 quicksort 2.373
rv32_insertion 1.538 sort_search 2.025
mult_no_lsq 2.092 outer_product 1.478
sampler 2.752 graph 3.114
rv32_fib_rec 2.025 mergesort 2.686

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

5

IV. ANALYSIS
In this section, we analyze the performance improvement

over different advanced features and the reasons for finalizing
the parameters for the pipeline processor.

A. Non-blocking Cache vs. Blocking Cache
The average CPI of the processor with a blocking data cache

is 3.11 while the average CPI of the processor with a non-
blocking data cache is only 2.42. The CPI improvement of
having a blocking cache is 22%. For all of the 30 test programs,
having a non-blocking cache with MSHR size 4 will result in a
better CPI than using a blocking cache (Figure 10).

Figure 10. CPI Comparison of Blocking Cache and Non-blocking Cache

However, we didn’t find much further performance

improvement by increasing the MSHR size. Increasing the
MSHR from size 4 to size 8 only gives us about 0.1% CPI
improvement. This is normal because for a processor with ROB
size 32, the scenario that over 4 cache misses exist at the same
time is very rare. Therefore, we finalize the MSHR size to be 4
to shoot for a smaller synthesis clock period.

B. Optimal BRAT Size
Early branch resolution is probably the most important

feature of this out-of-order processor. Unfortunately, because
early branch resolution’s implementation details vary largely

from traditional way which resolve branch misprediction at
instruction retirement, we are not able to keep two copies of the
scheme and compare the performance improvement of full
early branch resolution with a processor that does not
implement early branch resolution. With simple qualitative
analysis, the processor starts fetching and prefetching new PCs
as soon as the CDB broadcasts the branch misprediction signal
and other structures will squash the instructions on the wrong
path, this is inherently better than resolving the branch
misprediction at the head of the ROB. Therefore, having early
branch resolution is strictly better than no early branch
resolution for most of the time (except for when the BRAT
stack is full, which is very rare).

Although directly comparing the effect of early branch
resolution is not feasible, finding a suitable BRAT size for
optimal CPI is worth analyzing.

Figure 11. CPI of different size BRATs

For programs in which branch instructions are dense or close

to each other (e.g. betst1, rs32_insertion and bfs), BRAT size 2
is too small and will experience performance degradation
(Figure 11). After switching to BRAT size 4, the overall CPI
improvement is about 12.94% (Figure 11).

Also notice that for small test programs such as rv32_parallel
and rv32_copy, having a smaller BRAT size of 2 will even
produce a better CPI than using a large BRAT. This is probably
because the branch predictor behaves badly because the
predictor is not warmed up. And stall to wait for branch
instructions to resolve are actually better than going on and
squashing everything later.

The early branch resolution doesn’t provide the intended
performance improvement as we expected. Part of the reason
might be on the branch predictor side. A too good or too bad
branch predictor will influence the early branch resolutions
performance either by there are no mispredicted branches or
stalling is even better when there are too many mispredicted
branches. Analysis of branch prediction is in section C.

C. Predictor Accuracy and Predictor Size
Branch prediction plays an important role in total

performance as a misprediction can waste a lot of efforts. To
better account for the early branch resolution feature, we dig
further into the branch predictor and analyze the tradeoff and
potential problems in the branch predictor performance and its

TABLE II
PROGRAM COMPLETION TIME FOR TEST PROGRAMS

Program Time (ms) Program Time (ms)

rv32_mult 0.006 bfs 0.101
rv32_parallel 0.003 basic_malloc 0.034
rv32_copy 0.007 insertionsort 1.940
rv32_copy_long 0.003 dft 1.304
rv32_fib_long 0.008 fc_forward 0.016
rv32_fib 0.003 alexnet 4.565
rv32_saxpy 0.006 backtrack 0.217
rv32_evens_long 0.005 matrix_mult_rec 0.876
rv32_evens 0.003 omegalul 0.002
rv32_btest1 0.013 priority_queue 0.053
rv32_btest2 0.025 quicksort 0.674
rv32_insertion 0.009 sort_search 2.426
mult_no_lsq 0.006 outer_product 6.086
sampler 0.003 graph 0.358
rv32_fib_rec 0.257 mergesort 0.265

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

6

design problems.
Branch Target Buffer (BTB) stores the address for branch

instructions and allows the processor to identify the fetching
program counter corresponding to a branch instruction and its
target address. A local history predictor makes use of the branch
position in the program to make predictions. Local History
Table (LHT) contains the branch information of the last several
bits of the program counter and Pattern History Table (PHT)
contains the 2-state predictor (00, 01 for not taken and 10, 11
for taken).

The potential values for BTB size and branch history table
size are 8, 16 and 32 while for pattern history table size are 8
and 16.

However, adjusting these three parameters doesn’t greatly
affect the CPI of the processor. The CPI change is in magnitude
of 0.01 (Figure 12). By calculating the average CPI among all
test cases, the best average CPI is 2.52, achieved by the setup
of 8-entry BTB, 16-entry BHT and 8-entry PHT, which is
used as the final parameter for the branch predictor in the
pipeline processor.

Figure 12. Average CPI of different size BTBs and Local Predictors

Meanwhile, the actual accuracy of prediction our design

obtained is also an interesting factor. The total prediction
accuracy for each setup is derived along with the CPI
information (Figure 13).

Figure 13. Average accuracy of different size BTBs and Local Predictors

The prediction rate is surprisingly decreased per increasing

size. The best accuracy is 68.36% from 8-entry BTB, 8-entry
BHT and 8-entry PHT. However, this result points out an
unexpected trend that CPI is not affected very much while the
accuracy is dropping as the size grows. So, a new set of data is
added to fix all variables to be 4-entry. Since it has the lowest
CPI and a lower accuracy, the optimal size is set as: 8-entry
BTB, 16-entry BHT and 8-entry PHT.

However, we notice that some test cases have very low
accuracy (Figure 14). For those with small instruction numbers,
it might be due to cold start, where most branches are executed
once or twice. On the other hand, there are test cases with large
amounts of instructions. For those with low accuracy through
all setups, like rc32_fib_rec, this is mainly because we are
executing a recursive algorithm, which is full of function calls
and each return address is different. Therefore, the address of
an unconditional jump representing a return may never be
correctly predicted. Meanwhile, there are test cases with low
accuracy for large predictors but high accuracy for smaller ones,
like insertionsort and matrix_mult_rec. Local predictors with
small BHT and BTB somewhat degenerate to global predictors.
So, for test cases with chains of branches, they might work
much better (Figure 14).

Figure 14. Accuracy of Different Size BTBs and Local Predictors

The branch predictor is not very ideal in this processor. Due

to lack of time, a more sophisticated branch predictor is not
implemented. A more complex predictor such as a tournament
branch predictor or a return call stack can outperform a single
local branch predictor for sure. With a better branch predictor,
the performance improvement of having early branch resolution
in the processor will be better.

D. Performance Improvement of Different Prefetching Size
Instruction prefetching counts as an important factor to

improve processor’s performance, especially at the condition
where memory latency is about 10 cycles. We take down the
CPI information before adding the prefetching module and
analyze the performance improvement with different
prefetching sizes of 4, 8 and 16.

Figure 15 indicates that adding a prefetching unit to the
pipeline can largely improve the performance of our processor.
To be more specific, going from no prefetching to prefetching
4 instructions results in an average CPI reduction of 33.7%!
Enlarge the stream buffer in the prefetcher to size 8 can further
improve the performance of 8.01%.

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

7

Figure 15. No Prefetching CPI vs. Different Prefetching Size CPI

Using a prefetching of size 16 actually hurt performance a

little bit, as shown in Figure 3. While prefetching stream buffer
size 16 gives us the best CPI 0.86 on test rv32_copy_long and
CPI 0.95 on rv32_fib_long, notice that it actually hurts the
processor’s performance on some large C testcases such as
insertion sort and quicksort. This is probably because the
prefetching unit is doing extra work to fetch unnecessary
instructions on mispredicted branches. Above all, prefetching
size of 8 is chosen ultimately since it improves the overall CPI.

E. Cache Hit Rate & Load-Store Forwarding in MSHR
Conventional load to store forwarding is implemented in the

processor. Except for that, a tiny trick feature is added to the
non-blocking cache. The data that’s in the MSHR but not yet
committed to memory can be forward to later load operations
as well. Since the point of load-to-store forwarding is to
perform load operations quickly, we combine the cache hit and
forwarding from MSHR as our total cache hit rate because these
load operations can finish in just one extra cycle even if they
are not forwarded from the store queue directly. Surprisingly
this mechanism works pretty well and gives back a good cache
hit rate of 93.6% with only a 32 * 8 Byte direct mapped cache
(Figure 16).

Figure 16. Data Cache Hit Rate on Different Test Programs

F. Further Refinement on Reservation Station Size
Lastly, reservation station size (RS) is analyzed to address

the problem that RS might be full to create structural hazard,
causing the processor to stall for too long. A small RS will more
easily be filled up, so in theory a larger RS will result in fewer
stalls and thus better performance. RS size of 2, 4, 8 and 16 is
tested and the corresponding CPI is compared (Figure 17).

Figure 17. CPI with different RS sizes

For most test programs the CPI decreases with the size of RS.

Note that there is a strange point at test program
matrix_mult_rec. The program is a large matrix multiplication
program written in recursion and requires a lot of store
operations and incurs a lot of store misses in the data cache.
Increasing RS sizes does not help in this case because nearly all
of the stalling comes from the store queue.

G. Overall Performance Against In-Order Pipeline
To evaluate the improvement and effectiveness of the

designed processor. A detailed comparison with the five-stage
pipelined processor is performed thoroughly. All the 30
testcases are run on the provided 5 stage pipelined processor.
The final metric used here is program completion time, which
is the most suitable metric here to evaluate the performance
improvement. Because the original five-stage pipeline
processor omits the actual memory latency, 30ns memory
latency is used for memory access in only one cycle for the in-
order pipeline processor.

TABLE III
PROGRAM COMPLETION TIME COMPARISON OF OUT-OF-ORDER PIPELINE

PROCESSOR WITH FIVE-STAGE IN-ORDER PIPELINE PROCESSOR

Program Out-of-Order
Completion Time (ms)

In-Order
Completion Time (ms)

rv32_mult 0.006 0.013
rv32_parallel 0.003 0.008
rv32_copy 0.007 0.007
rv32_copy_long 0.003 0.021
rv32_fib_long 0.008 0.022
rv32_fib 0.003 0.007
rv32_saxpy 0.006 0.010
rv32_evens_long 0.005 0.013
rv32_evens 0.003 0.005
rv32_btest1 0.013 0.013
rv32_btest2 0.025 0.025
rv32_insertion 0.009 0.030
mult_no_lsq 0.006 0.010
sampler 0.003 0.005
rv32_fib_rec 0.257 0.742
bfs 0.101 0.182
basic_malloc 0.034 0.054
insertionsort 1.940 4.766
dft 1.304 2.743
fc_forward 0.016 0.029
alexnet 4.565 10.667
backtrack 0.217 0.392
matrix_mult_rec 0.877 1.256
omegalul 0.002 0.003
priority_queue 0.053 0.084
quicksort 0.674 1.544
outer_product 2.426 7.121
graph 0.358 0.625
mergesort 0.624 0.498

UNIVERSITY OF MICHIGAN – COMPUTER ARCHITECTURE (EECS 470) – WINTER 2020 – GROUP 6

8

Figure 18 illustrates the program completion time
improvement of large test programs. Small testcases are omitted
in the figure because of scale problems since their completion
time is too small to show on the graph. Detailed completion
time is shown in Table III. The average program completion
time for our out-of-order processor is 0.643 ms and the average
program completion time for a five-stage pipeline processor is
1.665 ms. The performance is inversely proportional to the
completion time. Thus, the performance of the two-way
superscalar out-of-order processor is 2.590 times the
performance of an in-order pipeline processor, which indicates
a 159% performance improvement.

Figure 18. Program Completion Time Improvement

V. CONCLUSION
We have successfully implemented a two-way superscalar

out-of-order RISC-V processor using the R10k algorithm. The
processor synthesis in a clock period of 10.6 ns. This report
provides a detailed analysis of the processor’s advanced
features and their effectiveness. The processor is fully
integrated, tested in SystemVerilog HDL. We demonstrate our
processor is a fully working prototype of an out-of-order
processor design with early branch resolution and a superscalar
width of two.

REFERENCES
[1] JAMES E. SMITH, “The Microarchitecture of Superscalar Processors,”
 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995.
[2] Peng Zhou et al, “Fast Branch Misprediction Recovery in Out-of-order
 Superscalar Processors,” ICS ’05, June 20-22, Boston, MA, USA.
[3] Kenneth C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
 IEEEMicro, 1996.

