
Robust Real-time Multi-vehicle Collaboration on
Asynchronous Sensors

Qingzhao Zhang
†∗
, Xumiao Zhang

†∗
, Ruiyang Zhu

†∗
,

Fan Bai
‡
, Mohammad Naserian

‡
, Z. Morley Mao

†
†
University of Michigan

‡
General Motors

ABSTRACT
Cooperative perception significantly enhances the percep-

tion performance of connected autonomous vehicles. Instead

of purely relying on local sensors with limited range, it en-

ables multiple vehicles and roadside infrastructures to share

sensor data to perceive the environment collaboratively.

Through our study, we realize that the performance of coop-

erative perception systems is limited in real-world deploy-

ment due to (1) out-of-sync sensor data during data fusion

and (2) inaccurate localization of occluded areas. To address

these challenges, we develop RAO, an innovative, effective,

and lightweight cooperative perception system that merges

asynchronous sensor data from different vehicles through

our novel designs ofmotion-compensated occupancy flow pre-
diction and on-demand data sharing, improving both the ac-

curacy and coverage of the perception system. Our extensive

evaluation, including real-world and emulation-based exper-

iments, demonstrates that RAO outperforms state-of-the-art

solutions by more than 34% in perception coverage and by

up to 14% in perception accuracy, especially when asynchro-

nous sensor data is present. RAO consistently performs well

across a wide variety of map topologies and driving scenar-

ios. RAO incurs negligible additional latency (8.5 ms) and

low data transmission overhead (10.9 KB per frame), making

cooperative perception feasible.

CCS CONCEPTS
• Networks→ Cyber-physical networks; Network proto-
col design; • Applied computing→ Transportation.
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1 INTRODUCTION
Connected and autonomous vehicles (CAVs) rely on a variety

of advanced on-board sensors (e.g.,GNSS, camera, Radar, and

LiDAR) to localize their ego pose in relation to local road

elements (e.g., lanes, traffic signs), as well as to detect other

traffic participants. However, the effective range of sensors

can be limited. For example, off-the-shelf LiDAR sensors have

an effective range of about 80 meters [10], beyond which

the resolution of sensor data (i.e., point cloud) decreases
drastically. To this end, collaboration among CAVs as well as

roadside infrastructure can enhance the perception capability

of individual CAVs by extending the perception range and

covering occluded areas. Through shared sensor data, each

vehicle is able to broaden its perception of the surrounding

environments, make more accurate predictions, and thus

plan its driving behaviors more optimally.

Cooperative perception [16, 17, 27, 30, 51, 58, 62, 63, 69] is

gaining traction in the research community in recent years.

One challenge is system scalability. The bandwidth usage of

sharing raw sensor data is not sustainable, even with state-

of-the-art wireless communication technologies. If naively

sharing full frames of high-fidelity data, the estimated band-

width usage exceeds 300 Mbps [69], which is far beyond

the capacity of current vehicular networks (e.g., C-V2X at

tens of Mbps) [57, 64]. To tackle this problem, one could

first partition the raw point cloud into regions and then only

transmit the most relevant regions. We call such approach

Partition and Selective Sharing. For instance, EMP [69] shares

close-range points while AutoCast [51] shares the points of

objects with low visibility and high relevance to planning.

Though successful in addressing scalability, this selec-

tive sharing approach faces two fundamental challenges: (1)
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During data fusion, a vehicle’s local sensor data and data

from remote vehicles (or infrastructure) are asynchronous,

or captured at different times, due to different sensor config-

urations on both sides and unpredictable wireless transmis-

sion delay. The time gap between two frames can be larger

than 100 ms [2, 54], leading to inaccurate data merging and

damaged performance of downstream perception tasks. (2)

The indirect estimation of occluded areas can be inaccurate.

Particularly, instead of utilizing a vehicle’s direct and more

accurate insight of its own occluded areas, both EMP and

AutoCast obtain location estimates by either inquiring oth-

ers or using simple heuristics. Without knowing the exact

locations and shapes of obstacles blocking the views, such

practices may fail to share critical occluded areas.

In this paper, we focus on improving cooperative per-

ception by tackling the challenges caused by asynchronous

sensor data and inaccurate occlusion localization. To achieve

this, we develop RAO, a Real-time Asynchronous Occlusion-

aware multi-vehicle cooperative perception system, in which

the merged sensor data consistently and accurately cover

the occluded areas (e.g., blind spots of vehicles), without in-

curring additional processing latency. While we use LiDAR

as an illustrative example to represent generic 3D geomet-

ric features in surrounding environments, RAO can also be

applied to other sensors like stereo camera or Radar.

We develop event-driven, asynchronous protocols for Li-

DAR sensors, enabling four separate point cloud processing

and sharing tasks to be conducted in parallel without in-

troducing additional delay: (1) When a vehicle gets a local

LiDAR image, it generates and shares an occupancy map,

which is a 2D map that labels free areas and occupied areas

on the road. (2) Simultaneously, in each LiDAR scanning

cycle, each vehicle sends data requests to ask remote vehi-

cles or infrastructure for LiDAR data. The data requests are

optimized to maximize the quality of the merged point cloud.

(3) Upon receiving the data requests, the data is prepared and

sent back to the corresponding vehicles. (4) Once a vehicle

receives a local LiDAR sensor image, it merges the image

with requested sensor data and then conducts downstream

perception tasks, such as object detection and tracking.

To address the challenge of merging asynchronous sen-

sor data, we design a novel motion-compensated occupancy

flow prediction method, suitable for challenging automo-

tive scenarios featured with high vehicle mobility as well

as asynchronous and noisy data. Our prediction method

provides sufficient resilience against asynchronous data in

multi-vehicle perception collaboration by leveraging motion

information calculated from previous frames. Moreover, to

tackle the challenge caused by incomplete occlusion estima-

tion, we take an ego-centric approach that allows a vehicle to

determine its own occluded areas because the vehicle has di-

rect and more accurate knowledge of these areas. Compared

V1

V2

Scenario 1: Occluded objects
On-board sensors miss the detection of a 
critical object due to occlusion.

Sensor Range

Sensor 
Range

Required Sensor Range 
for Safe Maneuver

V2

Scenario 2: Extended perception
V2 extends the V1’s perception range that are 
insufficient to complete a safe lane change.

Figure 1: Two scenarios where cooperative perception helps.

to prior art that relies on remote vehicles’ indirect estimation,

our solution enables the merged sensor data to cover more

occluded areas with improved perception accuracy.

To evaluate RAO, we implement a prototype and run the

system in a realistic setup where vehicles transmit and pro-

cess LiDAR data asynchronously. Utilizing three datasets

collected from both real-world and photo-realistic synthe-

sized driving scenarios, we show that RAO yields a 34% and

14% improvement over state-of-the-art solutions in percep-

tion coverage and accuracy, respectively. RAO is lightweight;

it only introduces an extra latency of 8.5ms to the perception

process on the consumer side and generates a data volume

of 10.9 KB per frame, on average. Extensive experiments

demonstrate that RAO performs well across a rich variety of

map topologies and driving scenarios.

The key contributions of this work are as follows:

•We identify the challenges of synchronization and inac-

curate occlusion localization in practical cooperative sensor

sharing and analyze their impacts on cooperative perception.

•We design and implement RAO, a real-time multi-vehicle

cooperative perception framework, with robustness against

asynchronous data and efficient data sharing scheduling.

•We propose innovative designs of occupancy flow predic-

tion and on-demand data sharing that can efficiently synchro-

nize LiDAR point clouds captured at different timestamps,

enabling a seamless multi-vehicle data alignment and fusion.

•Through systematic experiments on two large-scale datasets

and one field test, we demonstrate that RAO brings signifi-

cant performance improvements to perception accuracy and

coverage with minor system overhead.

2 BACKGROUND
Cooperative perception. The emerging cooperative per-

ception aims to enhance CAVs’ awareness of the surrounding

environment. A vehicle’s onboard sensors can miss the detec-

tion of critical objects moving into its path, due to occlusion

caused by other obstacles on the road. The occluded object

may be detected too late to avoid a collision. Figure 1 shows
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such a scenario: with sensor data shared from Vehicle 2

(V2), the perception of Vehicle 1 (V1) can cover the crossing

pedestrian who is originally occluded by the bus. In addi-

tion, the sensors have a predefined perception range due to

technological limitations. There are corner cases where the

effective perception range is insufficient for conducting safe

maneuvers. In Scenario 2 of Figure 1, V1 intends to change

to an adjacent lane with high-speed traffic. Factors such as

lane-change time and acceleration time dictate the required

perception range behind V1 to complete the lane-change

maneuver safely [47]. By sharing sensor data, approaching

vehicles like V2 can benefit V1 with extended perception.

Existing cooperative perception schemes can be grouped

in several ways. (1) Data sharing stage: Early-fusion shar-

ing schemes [14, 16, 32, 51, 69] share the original raw sen-

sor data, which typically has a universal format, but de-

mands relatively high bandwidth for transmission; feature-

level sharing schemes [15, 17, 58, 62, 67] send intermedi-

ate features of perception, offering a balance between net-

work efficiency and perception accuracy; object-level shar-

ing schemes [40, 54, 55] directly share lightweight percep-

tion results such as object bounding boxes. (2) Network

communication topology: Vehicle-to-vehicle (V2V) sharing

schemes [16, 51, 63] do not have a centralized party and

shared messages are exchanged directly among vehicles;

vehicle-to-infrastructure (V2I) sharing schemes [11, 69] uti-

lize infrastructure resources, such as edge nodes, to aggregate

vehicle data and distribute perception results back to vehi-

cles. (3) Sensor type: Cooperative perception can be built on

various types of sensors [50] while existing works mainly

focus on LiDAR.

Vehicular wireless networks. Vehicular networks have
been developed to facilitate collaboration among vehicles and

roadside infrastructure for various tasks [40, 50, 52]. Com-

mercial products using DSRC [28] can achieve up to 27 Mbps.

Some modern vehicles are also equipped with cellular in-

terfaces that support direct modes with higher bandwidths

of tens of Mbps [22, 43, 57]. With the emergence of 5G, the

vehicular network bandwidth is growing even higher [1, 46].

Nevertheless, sharing data through vehicular wireless net-

works is challenging due to factors such as bulky data size

and bandwidth fluctuation. Previous studies [51, 69] have ex-

plored ways to reduce data transmission overhead and adapt

to bandwidth changes when sharing sensor data via V2V/V2I

wireless networks. A common design used by them is that

vehicles transmit only partial sensor data by identifying the

most relevant information through mathematical heuristics.

3 MOTIVATION
In this work, we focus on early-fusion cooperative percep-

tion [16, 51, 58, 63], where vehicles share LiDAR data via a

wireless network and process data locally. Operating on raw

⋯

Producer
Consumer

Data processing Data transmission

Data fusion P+C

LiDAR cycle LiDAR cycle
LiDAR cycle⋯

⋯

Get LiDAR P P received by consumer
Data arrival delay 𝛿2

Inter-vehicle 
time gap

Data fusion time gap

Perception

Get LiDAR C

time

Figure 2: Synchronization problem in protocol diagram
of cooperative perception.

20 ms of Asynchronization 120 ms of Asynchronization

Vehicle A’s LiDAR points (in black)

Ground truth 
(green bounding box)

Vehicle A’s LiDAR points (in black)

Vehicle B’s LiDAR points (in blue) 
About 1.6 m deviation

Vehicle B’s LiDAR points (in blue) 
About 10 cm deviation

Inaccurate object detection 
(red bounding box)

Figure 3: Merged point clouds from two vehicles (A and
B) at various levels of synchronization (Bird-eye view).

sensor data enables flexible use of merged data. Efficient data

sharing is made possible with mature network infrastruc-

ture and proper data partitioning. However, existing system

proposals have severe limitations, including inaccurate data

fusion due to the asynchronous nature of multi-vehicle data

sharing and insufficient shared data due to incomplete oc-

clusion detection. We discuss these issues in detail in §3.1

and §3.2, and address them by achieving the design goals

itemized in §3.3.

Terms. We refer to a vehicle that receives sensor data as

a consumer. Others, such as vehicles and roadside infrastruc-

ture, that share sensor data with consumers are producers.
Note that a vehicle can play both roles simultaneously.

3.1 Asynchronous Sensor Data
Existing early-fusion cooperative perception proposalsmerge

asynchronous sensor data, but few address the resulting in-

accuracy problems. To this end, we break down the synchro-

nization problem and analyze the temporal order of events

in cooperative perception depicted in Figure 2.

Inter-vehicle time gap.Vehicular LiDAR sensors produc-

ing data periodically (the cycle is 100 ms for most commercial

LiDAR sensors [10]). However, the capture time of LiDAR

images on different LiDARs are not synchronized, leading to

inevitable gaps between timestamps of LiDAR images from

every two vehicles. For example, in Figure 2, the producer

gets a LiDAR image from its local sensor at timestamp 0 ms,

while the consumer’s next image is generated between 0 ms

and 100 ms. For each pair of a producer and a consumer,

we define the inter-vehicle time gap as the time difference

between the generation of the producer’s LiDAR image and

the generation of the consumer’s next LiDAR image. Note

that this time gap is primarily attributed to the configuration

of LiDAR devices thus it cannot be mitigated by traditional

clock synchronization methods such as NTP [44].
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Data arrival delay. Even though a producer sends its

LiDAR data, the data does not arrive at the consumer imme-

diately. The data undergoes pre-processing (e.g., partitioning,
compression), transmission, and post-processing (e.g., decom-

pression) before the consumer can use it. As presented in

previous works [16, 58, 69], the entire processing duration

rarely falls below 100 ms, and thus cannot be ignored. We

define the data arrival delay as the interval between a pro-

ducer generating local LiDAR data and a consumer receiving

processed, ready-to-use data.

Due to the above factors, a consumer may not have the

producers’ latest LiDAR data when generating its own local

data. However, to minimize the latency of downstream per-

ception tasks, most existing cooperative perception solutions

opt to immediately perform data fusion and perception upon

receiving their local LiDAR data. In this way, since LiDAR

data fusion is a simple process of merging 3D points, these

systems introduce little additional latency to perception tasks

compared with single-vehicle perception.

The question is how dated the producer’s data can be in

such systems. Formally, given a producer and a consumer,

we denote the LiDAR cycle time (e.g., 100 ms) by𝑇 , the inter-
vehicle time gap by 𝛿1, and the data arrival delay by 𝛿2. By

definition, 𝛿2 inevitably contributes to the data fusion’s time

gap. There is also a time gap between data arrival and the

consumer generating its next LiDAR image, (𝛿1 − 𝛿2 mod 𝑇 ).

Therefore, the total time gap of data fusion is:

𝛿 = 𝛿2 + (𝛿1 − 𝛿2 mod 𝑇 ), 0 ≤ 𝛿1 < 𝑇, 𝛿2 > 0. (1)

Ideally, the producer’s data arrives at the moment of the

consumer’s data fusion. In this case, 𝛿1−𝛿2 mod 𝑇 is zero, and

𝛿 is equal to 𝛿2. In contrast, in the worst case, the producer’s

data arrives right after the data fusion. 𝛿 goes up to 𝛿2 +𝑇 .
Such synchronization problems are not explicitly discussed

in existing cooperative perception proposals. False tolerance

mechanisms in conventional robotic perception may not be

ideal for CAVs, primarily due to the intricate driving scenar-

ios and the strict latency requirements. For instance, registra-

tion algorithms (e.g., ICP) are used in multi-robot SLAM [20]

to calibrate generated maps. This approach spatially aligns

maps of stationary objects but cannot address asynchronous

time frames. Alternatively, other approaches [24, 53] employ

motionmodels (e.g., kinematicsmodels) to forecast the behav-

ior of moving objects. However, obtaining such motion mod-

els can be challenging for remote unidentified vehicles on

the road. For connected vehicle applications, AutoCast [51]

reports that both its data processing and transmission are

barely below 100 ms. As a result, when the inter-vehicle time

gap is close to 100 ms, the worst-case data fusion time gap

is almost 300 ms according to Equation 1, during which a

60 km/h vehicle can shift its position by 5 meters. As shown

in Figure 3, objects can hardly be recognized in the merged

point clouds without proper synchronization. V2VNet [58],

Missing Obstacles Incomplete Obstacle Shapes

Producer

Obstacle not 
detected by 
the producerConsumer

Consumer’s blind spot 
missed by the producer

Producer

Consumer

Part of obstacle is 
visible to producer

Estimated 
blind spot

Real blind spot

Figure 4: Inaccurate blind spot estimation (the con-
sumer’s/producer’s points and heading in black/blue).
a deep learning model for intermediate-fusion cooperative

perception, uses neural networks to compensate for the time

gaps. It states that synchronization on raw point clouds is

nontrivial, and therefore is not implemented in its evalua-

tion. VIPS [54] tolerates the asynchronization by aligning

bounding boxes from different CAVs, which is effective only

in object-level sharing schemes. Autonomous vehicles [2, 3]

commonly use high-definition (HD) maps for accurate posi-

tioning but maps alone cannot address the asynchronization

problem as the errors come from inconsistent timestamps

instead of inaccurate localization. To the best of our knowl-

edge, there is no existing work addressing the early-fusion

synchronization challenge.

3.2 Incomplete Occlusion Estimation
To reduce transmission latency, early-fusion cooperative per-

ception schemes usually shrink the size of shared LiDAR data.

Besides compression and sampling, previous works [50, 51]

propose sharing only critical regions, i.e., blind spots
1
of

others. This is based on the insight that improving sensor

data quality in well-observed regions does not greatly bene-

fit downstream tasks. For instance, in EMP, vehicles share

LiDAR data in close areas, based on Voronoi Diagram [12]. In

AutoCast, producers estimate the blind spots of consumers

based on the consumers’ views. Specifically, producers in

AutoCast acknowledge the location of consumers, localize

on-road objects, and finally perform simple ray casting to

“guess” consumers’ blind spots occluded by these objects.

Thanks to the blind spot estimation, AutoCast can cover

more areas after data fusion than EMP. However, the esti-

mated occluded areas can significantly differ from the ground

truth. We analyze the sources of inaccuracies as follows.

First, each producer’s perception range is limited and thus

may not observe all obstacles blocking consumers’ view.

Without knowing the specific obstacle location, the provider

can hardly identify the area behind that obstacle; in contrast,

the consumer has accurate knowledge of its own occluded

areas. As shown in Figure 4, one occluded area of the con-

sumer, over 50𝑚2
, is missed by the producer because the key

obstacle causing the occlusion is unknown to the producer.

1
We define blind spots as areas that cannot be directly perceived by a vehicle

itself, caused by occlusion or long distance. We also use the terms blind
spots and occlusion interchangeably.
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Second, producers cannot recognize the complete shape

of obstacles, and thus the ray-casting method is sometimes

inaccurate in identifying occluded areas. In Figure 4, the pro-

ducer observes a key obstacle that may block the consumer’s

view but can only see one side of the obstacle without know-

ing the depth. As a result, when the producer uses the partial

obstacle for ray casting, it implicitly assumes that the con-

sumer can “see-through” the rear part, causing the estimated

occluded areas to be much narrower than the ground truth.

Due to these inaccuracies, producer-centric occlusion es-

timation often misses actual occluded areas of consumers,

degrading the benefits of data sharing.

3.3 Design Goals
In building RAO, we aim to solve the above problems while

achieving real-time robust cooperative perception.

• Robustness against asynchronous data. Under realistic
driving scenarios where vehicles share asynchronous sensor

data, RAO should produce accurate perception results.

•High occlusion coverage. A large proportion of occluded

areas should be filled with sensor data from remote vehicles.

• Real-time protocol. The execution of RAO’s protocol
should meet the real-time requirements of real-world vehicle

perception systems. To be specific, each perception cycle

should be finished within 100 ms [39].

• Negligible additional latency for perception. Com-

pared to single-vehicle perception, RAO should not cause

any observable delay for vehicles to get perception results.

4 SYSTEM DESIGN
We describe how RAO satisfies each design goal outlined in

§3.3. After shedding light on how to overcome the limitations

of prior work in §4.1, we present key components and the

general workflow of RAO in §4.2. We then elaborate the

detailed design of three critical components: occupancy map

generation, occupancy flow prediction, and data scheduling,

in §4.3, §4.4, and §4.5, respectively.

4.1 System Overview
To tackle the inaccuracy problem caused by asynchronous

data (§3.1) and incomplete blind spots (§3.2), we propose two

novel solutions, occupancy flow prediction and on-demand
data scheduling, in our design of RAO.

Occupancy flow prediction.Although sensor data items

arriving at consumers are inherently asynchronous, one can

still manage to synchronize the received point clouds from

different producers using an intelligent prediction mecha-

nism. While there is a rich body of literature on scene flow

prediction that predicts the subsequent frame of a LiDAR

image based on previous frames [18, 23, 34, 37], these algo-

rithms are not suitable for our targeted applications. They

fail to generate results sufficiently fast for real-time percep-

tion, with most requiring near or over 100 ms. Also, we aim

Producer

Consumer

Local LiDAR 
Image

Local LiDAR 
Image

Occupancy 
Map w/ Motion

Occupancy 
Map w/ Motion

V2V N
etw

orkV2
V 

N
et

w
or

k

Latest Producers’ 
Occupancy Maps

Data 
Requests

Producers’ Synced 
LiDAR Image

Consumers’ Data 
Request

Partitioned Synced 
LiDAR Image

Object Point 
Clustering

Object 
Tracking

Point Cloud 
Prediction

Data 
Fusion

Object Point 
Clustering

Object 
Tracking

Perception 
Algorithm

Occupancy Map 
Prediction

Data 
Scheduling

Process Data item Dependency

Figure 5: System Architecture of RAO.
to synchronize point clouds to any given future timestamp

to compensate for the arbitrary time gaps between LiDAR

images, while existing algorithms are frame-wise and can

only synchronize point clouds at fixed intervals.

To achieve real-time prediction, we simplify the prediction

problem by considering the uniqueness of CAV scenarios: the

data asynchronization is mainly reflected on objects (e.g., ve-
hicles) moving on a surface (e.g., ground). Therefore, unlike
conventional approaches that focus on independent LiDAR

points, we propose an efficient prediction algorithm that

only tracks non-ground clusters of points. Using our mecha-

nism, upon receiving a local LiDAR image in each frame, the

vehicle clusters the LiDAR points to localize on-road objects

and estimates the motion of clustered objects by compar-

ing the corresponding clusters across consecutive frames. In

this way, whenever synchronization is needed, even if the

received data frame is missing or delayed, the consumer can

leverage prediction to compensate for arbitrary time gaps.

On-demand data scheduling. To detect blind spots, we

argue that consumers themselves have the most accurate

and reliable information because they can readily recognize

areas with few or even no LiDAR points and mark these

areas as occluded areas. Inspired by this insight, we advocate

that consumers should proactively request data on specific

areas from producers, which is a departure from current

mainstream approaches such as EMP [69] and AutoCast [51]

where producers have to “guess” consumers’ blind spots. The

advantages of this consumer-centric approach are twofold:

(1) It improves the accuracy of blind spot estimation since

the consumer knows the best; and (2) proactive data requests

by consumers prevent duplicate data shared by multiple

producers, thus eliminating unnecessary bandwidth usage.

4.2 System Components
In RAO, the producers and consumers are connected by ve-

hicular wireless networks that allow for the exchanges of

sensor data and control messages. RAO’s protocol is event-
driven, meaning that protocol tasks are executed by produc-

ers and consumers asynchronously. As shown in Figure 5,

the execution of protocol tasks is triggered by certain events,
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either a new data frame being generated or a prior process

being completed. The workflow of RAO can be divided into

four separate tasks: occupancy map generation, data request

generation, data response generation, and data fusion.

Occupancy map generation is responsible for produc-

ing occupancy maps, in which on-road objects, free-to-drive

areas, and invisible areas are labeled in the 2D space. For

each vehicle, after its LiDAR sensor generates a local LiDAR

image, this component immediately starts to generate an

occupancy map and broadcasts the map once finished. The

occupancy map generation process involves several steps:

(1) RAO runs LiDAR segmentation to separate LiDAR points

into ground points and object points. (2) Then our clustering

algorithm assigns the object points into separate groups of

objects, and the object tracking algorithm applies correlation

on clusters across consecutive frames. (3) To estimate the

object motions, which are later used for occupancy flow pre-

diction, RAO leverages 3D point cloud registration to obtain

accurate transformation of each cluster over two consecutive

frames, from which motion parameters (e.g., velocity) are
extracted. (4) Finally, the occupancy maps along with their

corresponding tracks and motion parameters, are bundled

together and broadcast over the V2V network.

Data request generation is executed on consumers to

determine what data requests should be sent to producers.

Once the consumer generates its local occupancy map, this

process is triggered. An essential part of this process is data
scheduling, which assigns needed LiDAR data that covers the

identified blind spot areas to available producers. To achieve

high-quality fusion of LiDAR data, the producers’ LiDAR

data should have a reasonably high resolution (i.e., density
of points). To achieve this goal, a consumer first (1) synchro-

nizes different occupancy maps on both the consumer and

producer sides to the timestamp of its next LiDAR cycle using

our occupancy flow predictionmethod; (2) Then the consumer

solves an optimization problem to assign each needed blind

spot area to the producer who can provide the best quality

of sensor data on that area. (3) The consumer sends out a

sequence of requests to corresponding producers.

Data response generation is executed on producers and

is triggered by receiving consumers’ data requests. For each

received data request, the producer fetches its latest locally

generated LiDAR image and partitions it into the interested

areas per request. Then the producer synchronizes the parti-

tioned image into the timestamp requested by the consumer

and sends it back to the consumer. This synchronization step,

again, leverages our occupancy flow prediction method.

Data fusion is the final process that merges available Li-

DAR images from different vehicles, before feeding the gen-

erated outcome to downstream perception modules. Once a

consumer vehicle gets its local LiDAR image, it immediately

collects LiDAR data shared by other producers, transforms all

LiDAR images to the same coordinate system, and then com-

bines them. No additional data processing is needed since

the producers have already executed partitioning and syn-

chronization tasks, delivering the transformed data. Thanks

to its simplicity, RAO introduce no observable latency onto

downstream modules.

Note that RAO is a framework built on the fundamental

CAV architecture. We assume the CAVs can actively discover

nearby CAVs and establish bi-directional V2V connections

via C-V2X or DSRC. The CAVs also communicate their poses

and locations (GPS/IMU), which are required for transform-

ing LiDAR data to the same coordination system.

In the remainder of this section, we elaborate on our de-

signs of three major mechanistic components in RAO.

4.3 Motion-aware Occupancy Map
This component generates an occupancy map, which not

only labels the location of on-road objects but also tracks

their mobility trajectory and their motion parameters. Ex-

isting deep learning-based perception solutions are not suit-

able for generating occupancy maps because they require

significant computing resources and serve different goals.

In RAO, the occupancy map acts as metadata frequently

shared among CAVs, in order to guide efficient scheduling of

overall data sharing. To this end, occupancy maps need to be

lightweight in computation and communication overhead. In

contrast, perception algorithms based on deep learning, such

as 3D object detection and tracking, are performed on the

merged sensor data after the data fusion. Occupancy maps

indirectly benefit those expensive perception algorithms by

improving the quality of data fusion. We introduce the gen-

eration of occupancy maps as follows.

LiDAR point segmentation. We first remove less use-

ful background points that fall outside of the road regions,

leveraging HD maps provided by autonomous driving sys-

tems [2, 3]. Then, we use existing ground detection algo-

rithms [21, 48] to detect the ground plane and remove LiDAR

points on the ground. By clustering the remaining points, we

can identify all the non-ground objects on the road, with each

cluster representing a unique on-road object. This method

has been proven to be effective in prior art [19, 60, 68].

Area segmentation. After identifying on-road objects,

we generate a fine-grained representation of 2D space occu-

pancy, which classifies the 2D space into three categories:

occupied, free, and occluded. (1) Occupied areas are generated
by computing the convex hulls [13] of the object clusters.

(2) Free areas represent the region containing only ground

points. As demonstrated in Figure 6, we split the 2D space

evenly into sectors whose vertex is the LiDAR location (the

number of sectors is configurable for various granularity).

In each sector, we measure the distance from the LiDAR

location to the closest non-ground point and label the area
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Figure 6: Demonstration of the generation of motion-aware occupancy maps.

within the distance as a free area. (3) Occluded areas are our

key interests in cooperative perception. They constitute the

areas that are neither free nor occupied and can be readily

derived by subtracting the occupied and free areas from the

entire area. Figure 6 illustrates the 2D area segmentation on

LiDAR point clouds obtained in real-world environments.

Unlike conventional grid-based occupancy maps [29, 36,

51], our occupancy map splits areas using polygon represen-

tation. This approach offers two significant benefits over grid

representation: (1) polygons can represent arbitrary shapes

with better precision; (2) by adjusting the outline smoothing

factor, polygon representation is more flexible to strike the

right balance between reconstruction accuracy and data size.

For instance, LiDAR points are too large, bounding boxes

cannot represent arbitrary shapes, and grids are not data-

efficient as a large empty area could involve lots of grids.

Motion estimation. In addition to on-road object detec-

tion, motion state is also needed in RAO. The traditional

motion modeling-based approaches [56, 65] such as kine-

matic models cannot be used for occupancy maps, since (1)

one can hardly obtain accurate motion parameters of on-road

objects required by the motion modeling and (2) the shape of

occupied areas alters over time due to ever-changing visual

angles. To address these challenges, we leverage similarity

metrics that are specific to point clusters (e.g., the distribution
of points), to estimate the motion of objects over frames.

In RAO, we design a density-aware multi-object tracking

algorithm for point clusters. Inspired by AB3DMOT [59], a

baseline for 3D multi-object tracking, we utilize the affinity

matrix
2
for multi-object tracking and re-design the matrix

as follows: Given any two objects (i.e., occupied areas), we

define the affinity score as a weighted sum of two items,

(1) the distance between the mass centers of two clusters’

convex hulls, and (2) the difference in point density as the

number of points divided by the area of the convex hull.

Convex hulls can be directly calculated from point clouds

2
The affinity matrix hosts scores of similarity between possible object pairs

across two frames. Similar objects tend to be linked in the same track.

without the need for additional object detection algorithms,

minimizing potential sources of inaccuracies. The affinity

score of the two clusters is given by Equation 2, where 𝑋1

and 𝑋2 denotes two clusters in consecutive frames and𝑤1,

𝑤2 are coefficients.

𝑓 (𝑋1, 𝑋2) = 𝑤1 ·𝐿2 (𝑋1, 𝑋2)−1 +𝑤2 · |
Size(𝑋1)
Area(𝑋1)

− Size(𝑋2)
Area(𝑋2)

|
(2)

We then estimate an object’s motion based on its point

clusters in two consecutive frames, denoted by 𝑋 𝑡
𝑖 and 𝑋

𝑡 ′
𝑖

where 𝑖 is the object ID and 𝑡/𝑡 ′ (𝑡 ′ > 𝑡 ) are the timestamps

of the two frames. We first select the mass center of the

earlier occupied area as one reference point (it will act as the

“center” of the object in the later perspective transformation

process). Both point clusters are transformed in order to use

this reference point as their origin. We denote the centering

transformation by transformation matrix 𝑇 𝑡
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 . Formally,

𝑌 𝑡
𝑖 = 𝑇 𝑡

𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 · 𝑋 𝑡
𝑖 , 𝑌 𝑡 ′

𝑖 = 𝑇 𝑡
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 · 𝑋 𝑡 ′

𝑖 , (3)

where𝑌 𝑡
𝑖 and𝑌 𝑡 ′

𝑖 are clusters centered by the reference point.

We then apply the point cloud registration algorithm [25]

to discover a transformation 𝑇 𝑡 ′
𝑟𝑒𝑔 that transforms 𝑌 𝑡

𝑖 to mini-

mize its squared distance with 𝑌 𝑡 ′
𝑖 as follow:

𝑇 𝑡 ′
𝑖,𝑟𝑒𝑔 = argmin

𝑇

𝐿2 (𝑇 · 𝑌 𝑡
𝑖 , 𝑌

𝑡 ′
𝑖 ). (4)

Leveraging the rich features of 3D point distribution, the reg-

istration between 𝑌 𝑡
𝑖 and 𝑌 𝑡 ′

𝑖 can accurately capture the pose

change over two consecutive frames. Next, we normalize the

transformation matrix 𝑇 𝑡 ′
𝑖,𝑟𝑒𝑔 to represent transformation per

time unit. Specifically, we extract a translation vector and

a rotation vector from 𝑇 𝑡 ′
𝑖,𝑟𝑒𝑔, and divide them by the time

difference (𝑡 ′ − 𝑡 ) to obtain translation and rotation per time

unit. Then we reconstruct the transformation matrix per

time unit as 𝑇 𝑡 ′
𝑖,𝑢𝑛𝑖𝑡 . We refer to this operation as Scale:

𝑇 𝑡 ′
𝑖,𝑢𝑛𝑖𝑡 = Scale(𝑇 𝑡 ′

𝑖,𝑟𝑒𝑔,
1

𝑡 ′ − 𝑡 ) . (5)

We also update the reference point in timestamp 𝑡 to 𝑡 ′.
Despite on different timestamps, two reference points refer
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to the same position on the object itself as

𝑇 𝑡 ′
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑇 𝑡

𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 · (𝑇 𝑡 ′
𝑖,𝑟𝑒𝑔)−1. (6)

We store both 𝑇 𝑡 ′
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑇 𝑡 ′

𝑖,𝑢𝑛𝑖𝑡 as the estimated mo-

tion at timestamp 𝑡 ′, which will be used in occupancy flow

prediction (§4.4). This motion estimation task is executed

iteratively when a new frame arrives. In RAO, we parallelize
the motion estimation process of different objects in order

to reduce processing latency.

4.4 Occupancy Flow Prediction
Occupancy flow prediction is designed for "synchronizing"

data from different vehicles. A consumer can synchronize

its available occupancy maps to a future LiDAR scanning

cycle during data request generation. Similarly, during data

response generation, a producer can synchronize the latest

LiDAR image to the timestamp requested by the consumer.

Occupancy map prediction. RAO is able to predict the

future state of the occupancy map at timestamp 𝑡 ′, based
on an existing motion-aware occupancy map at timestamp

𝑡 , where 𝑡 ′ > 𝑡 . As discussed in §4.3, each occupied area is

associated with a motion vector, containing the centering

transformation matrix 𝑇 𝑡
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 and unit-time transformation

matrix 𝑇 𝑡
𝑖,𝑢𝑛𝑖𝑡 , where 𝑖 indicates the ID of the occupied area.

Assuming the vertices of the occupied area 𝑖 at timestamp 𝑡

is 𝑋 𝑡
𝑖 (occupied areas are represented by polygons), we can

predict the location of such vertices at timestamp 𝑡 ′ as:

𝑋 𝑡 ′
𝑖 = (𝑇 𝑡

𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 )−1 · Scale(𝑇 𝑡
𝑖,𝑢𝑛𝑖𝑡 , 𝑡

′ − 𝑡) ·𝑇 𝑡
𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 · 𝑋 𝑡

𝑖 . (7)

We first centralize the occupied area by using the latest

reference point as the origin and then apply the unit-time

transformation. Finally, the occupied area being calculated

is mapped back to the LiDAR coordination. Next, to predict

the occluded areas. We calculate the area occluded by newly

predicted occupied areas and compare it with the occluded

area at timestamp 𝑡 . We remove the occluded area different

from the free area 𝑆𝐹 and add the new occlusion into the

occluded area 𝑆𝐶 . Free areas can be updated similarly.

LiDAR image prediction. RAO can also predict a future

LiDAR image at timestamp 𝑡 ′ based on an existing LiDAR

image along with the motion-aware occupancy map at times-

tamp 𝑡 . The prediction assumes that the time difference (𝑡 ′−𝑡 )
is as small as 100 ms (a LiDAR cycle) so that the LiDAR point

clouds at two timestamps have a highly similar point distri-

bution on any object. To achieve this, we first extract LiDAR

points associated with each occupied area. Following the

same approach outlined in Equation 7, we transform the

points to the predicted locations and replace the original

points in the LiDAR image with the predicted points.

4.5 Data Scheduling
Data scheduling assigns the occluded areas of a consumer to

different producers capable of providing sensor data, which

Algorithm 1: Consumer data scheduling.

Input: Synchronized occupancy maps𝑀 (𝑖 ) = (𝑆 (𝑖 )
𝑂

, 𝑆
(𝑖 )
𝐹

, 𝑆
(𝑖 )
𝐶
) ,

𝑖 ∈ {0, 1, . . . , 𝑁 }, including occupied areas 𝑆𝑂 , free areas

𝑆𝐹 , and occluded areas 𝑆𝐶 ;𝑀 (0) is the consumer’s map

while others are producers’ maps.

Output: A mapping assigns areas to producers: 𝐴.

1 𝐻 ←MaxHeap;

2 𝐴← HashMap;

3 for Producer 𝑖 ∈ {1, 2, . . . , 𝑁 } do
4 for 𝑆

(𝑖 )
𝑂,𝑗
∈ 𝑆 (𝑖 )

𝑂
𝑆 do

5 𝑐
(𝑖 )
𝑗
← Score(𝑆

(𝑖 )
𝑂,𝑗

, ·);
6 MaxHeapAdd(𝐻 , 𝑐

(𝑖 )
𝑗

, 𝑆
(𝑖 )
𝑂,𝑗

);

7 end
8 end
9 while 𝐻 ≠ ∅ do
10 𝑆

(𝑖 )
𝑂,𝑗
←MaxHeapGet(𝐻 );

11 𝑆
(0)
𝐶
← 𝑆

(0)
𝐶
− 𝑆 (𝑖 )

𝑂,𝑗
;

12 HashMapAdd(𝐴, 𝑆
(0)
𝐶
∩ 𝑆 (𝑖 )

𝑂,𝑗
, 𝑖);

13 end

determines the efficiency of data sharing. We formulate it

as an optimization problem with a goal to maximize the

overall data quality for data fusion. The metrics of quality

are customized by the consumer since different downstream

tasks may value data quality from different perspectives.

We propose to solve the optimization problem through

a lightweight greedy search algorithm. As defined in Algo-

rithm 1, data scheduling relies on occupancy maps from both

the consumer and available producers. Prior to algorithm

execution, all occupancy maps need to be (1) synchronized

to the timestamp of the next LiDAR cycle using occupancy

flow prediction (§4.4), and (2) transformed into the same

coordination system using perspective transform (§4.2).

The scheduling algorithm is executed by the consumer

and consists of the following steps: (1) For each occupied

area in producers’ occupancy maps, we calculate a customiz-

able priority score and sort all producers’ occupied areas in

descending order of priority scores. (2) We process produc-

ers’ occupied areas one by one, from higher scores to lower

scores. For each occupied area, we calculate its intersection

with the consumer’s occluded areas. If an empty intersection

is present, this occupied area is discarded; we then assign

all the non-empty intersection areas to the producer. (3) To

prevent sharing duplicate data from multiple producers, we

remove the assigned area from the list of the consumer’s

occluded areas. We repeat steps (2) and (3) on all producers’

occupied areas until the data assignment process is finished.

Note that producers do not share ground points, which are

in large size but make little contribution to perception.

We define the priority score as the distance between the

producer’s LiDAR and the occupied area. A shorter distance
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leads to a higher LiDAR point density, bringing richer fea-

tures to downstream tasks. Note that the score definition is

customizable for various purposes (e.g., producer reputation).

5 IMPLEMENTATION
We build a prototype of RAO for the purpose of evaluation.

Emulator. We implement an emulator of asynchronous

multi-vehicle cooperative perception in Python with 1037

lines of code (LOC). The emulator accepts pre-recorded sen-

sor traces of multiple vehicles as input, including LiDAR

point clouds and 3D poses of LiDAR sensors over consecu-

tive frames. Note that the emulator is an event-driven system

that executes data processing and data transmission asyn-

chronously on multiple vehicle instances. The latency of data

processing is directly measured by executing our algorithm

implementations while the transmission latency is measured

using recorded network traces.

Algorithms. We implement the core algorithms of RAO,
including occupancy map generation, occupancy flow predic-

tion, and data scheduling, with 870 LOC in Python and 5,053

LOC in C++. The C++ programs are algorithm implementa-

tions optimized to minimize the computation overhead. The

Python implementation serves as an interface bridging the

emulator and C++ programs. For ground detection, we use

RANSAC [21]. For object tracking, we use parameters𝑤1 = 1

and 𝑤2 = 0.01 for the affinity score and ICP [25] for point

cloud registration. Data scheduling employs a distanced-

based priority score as described in §4.5.

6 EVALUATION
We conduct an extensive evaluation of RAO to demonstrate

its performance under realistic traffic scenarios (including us-

ing real-world datasets). We answer the following questions

to prove how RAO satisfies our design goals listed in §3.3:

(1) How much performance improvement can RAO bring to

downstream perception tasks on asynchronous sensor data

when compared to state-of-the-art works? (2) What is the

coverage of occlusion achieved by RAO’s perception sharing?
(3) Is RAO fast enough to support real-time operations?

We first introduce our experimental setup (§6.1). Then

we examine the end-to-end performance (§6.2) on a suite of

large-scale multi-vehicle data sets (including both simulation

and empirical traces) to analyze RAO (§6.3), followed by

system overhead analysis (§6.5) and ablation study (§6.4).

Finally, we conduct a case study in a real-world setup to

show RAO’s advantages over the prior art.

6.1 Experimental Setup
Datasets. We evaluate RAO using three datasets: (1) a real-

world vehicle-infrastructure dataset, DAIR-V2X-C [66], (2) a

simulation-based multi-vehicle dataset, CARLA-SUMO, and

(3) a real-world V2V dataset collected at Mcity [8].

• DAIR-V2X-C is a large-scale dataset consisting of 40k asyn-

chronous frames The data is captured by a vehicle-mounted

LiDAR and an infrastructure LiDAR deployed at 28 intersec-

tions in Beijing. We further process it by selecting consec-

utive frames of vehicle and infrastructure data, with each

scenario spanning over 10 seconds (i.e., 100 frames).

• CARLA-SUMO is an asynchronous multi-vehicle dataset

that we collect usingOpenCDA [4] based on the co-simulation

of CARLA autonomous driving simulator [7] and SUMO traf-

fic simulator [5]. The dataset features diverse road scenarios

including straight roads, interactions with two-way single

and two lanes, and T-intersections. We set the vehicle speed

to up to 50 kph, which is consistent with the average speed

limit on urban roads [9]. It contains 2-5 CAVs and 10-50

non-CAVs in each scenario and a total of 6880 frames.

• Mcity is a mock city for road testing CAV applications in

real-world setup, where we deploy 3 Lincoln MKZ vehicles

(CAVs) equipped with OxTS RT3000v3 GPS, Velodyne VLP-

32C LiDAR, and Cohda MK6C OBU as a C-V2X receiver. We

create 8 challenging driving scenarios that involve occluded

or far-away objects. For each scenario, we collect LiDAR,

GPS, and C-V2X traces from all CAVs for 15 seconds.

Perception models. We adopt Pointpillar [33] as the back-

bone object detection neural network for perception-related

tasks. For DAIR-V2X-C andCARLA-SUMO,we use pre-trained

models provided by DAIR-V2X [66] and OpenCOOD [63],

respectively. For Mcity data, we fine-tune the OpenCOOD

model for 10 epochs to adapt it to Mcity sensors.

Baselines. We evaluate RAO against the traditional single-

vehicle perception using local sensors (Local-only) and two

state-of-the-art early-fusion cooperative perception solu-

tions: (1) EMP [69], a V2I-based cooperative perception sys-

tem where CAVs selectively upload LiDAR data to an edge

node which executes perception algorithms. Based on the

algorithm of Voronoi diagrams, each CAV shares LiDAR data

in close range. (2) AutoCast [51], a V2V-based approach that

optimally determines shared data areas and schedules data

exchanges. Its data-sharing protocol is discussed in §3.

High-fidelity Emulation. We feed the sensor data into

our RAO prototype (§5) and emulate the network conditions

using real cellular network traces [45]. Specifically, the traces

are collected from LTE uplink while driving on urban roads.

The bandwidth statistics of the traces are 15.67± 10.38Mbps.

We conduct the experiments on a Linux machine equipped

with a 32-core Intel Xeon CPU and an Nvidia 2080Ti GPU.

6.2 End-to-end System Performance
Using a combination of simulation data and empirically col-

lected traces, we first evaluate the end-to-end system perfor-

mance of RAO to demonstrate how RAO benefits downstream

perception tasks after data sharing.

866



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Qingzhao Zhang, et al.

Table 1: Object detection accuracy under different
multi-vehicle collaboration schemes and datasets.

Traffic Scene Perception AP@0.5/AP@0.7
Local-only EMP AutoCast RAO

DAIR-V2X-C 48.99/40.78% 48.82/40.68% 50.36/41.18% 53.11/43.49%
CARLA-SUMO 48.63/37.17% 64.08/54.26% 64.91/51.50% 74.79/62.01%
- Town05 40.68/30.18% 48.63/38.25% 63.61/39.88% 69.81/58.72%
- Town06 65.46/48.30% 73.22/53.22% 67.55/58.47% 81.72/65.19%
- Town10HD 40.12/32.58% 64.34/57.18% 69.90/52.50% 78.53/65.25%
Mcity 51.51/41.13% 64.88/50.50% 65.76/48.32% 69.13/51.25%

Table 2: Coverage of data sharing.

Overhead Metric Collaboration scheme
EMP AutoCast RAO

Density 0.2132 0.1857 0.2756
Coverage 0.3352 0.2601 0.3585
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Figure 7: Distribution of per-
ception IoU (accuracy).
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Figure 8: Distribution of ob-
ject density in merged data.

Perception accuracy. We run 3D object detection (i.e.,
perception) on the merged data produced by RAO and base-

line schemes. We calculate Average Precision (AP) [6] with

a threshold of Intersection over Union (IoU) to evaluate the

accuracy of perception. IoU measures the overlap between

predicted bounding boxes and ground-truth bounding boxes.

A higher IoU value indicates more accurate object detection.

The AP metric counts prediction bounding boxes with IoU

higher than the threshold as true positives. We adopt IoU

thresholds 0.5 and 0.7, which are commonly used in evaluat-

ing CAV perception. Table 1 summarizes the overall average

precision supported by each scheme.

As shown in Table 1, RAO is able to achieve significant

improvements in perception accuracy on all three datasets,

compared to other schemes. Overall, RAO improves the AP

at IoU over 0.5 (AP@0.5) by 4% – 30% compared to Local-

only, 5% – 19% compared to EMP, and 4% – 14% compared to

AutoCast. Among the three datasets, CARLA-SUMO demon-

strates the best improvements brought by RAO. The goal of
creating CARLA-SUMO was to complement DAIR-V2X-C’s

two-LiDAR setup with a larger number of CAVs and non-

CAVs on the road in more diverse driving scenarios (§6.1),

which is a realistic setting in large-scale deployment of co-

operative perception. It explicitly exposes the challenges of

synchronization and blind spot detection. We mainly focus

on CARLA-SUMO for later analysis in §6.3, §6.4, and §6.5.

To better understand how accurate the object detection

is in RAO, we further plot the distribution of IoU values

in Figure 7. In general, IoU is higher in RAO. Compared to

Ground Truth Predicted Consumer’s LiDAR Providers’ LiDAR

Local-only EMP

AutoCast RAO

Inaccurate 
Prediction

Inaccurate 
Prediction

Missed 
Prediction

Figure 9: Synchronization of LiDARdata in various schemes.

AutoCast RAO
Ground Truth Consumer’s LiDAR Providers’ LiDAR

The back side of 
objects is missed

Figure 10: Coverage of blind spots in RAO and AutoCast.

AutoCast, RAO has significantly more accurate predictions

(e.g., IoU 0.7-0.9) and fewer inaccuracy predictions (e.g., IoU
0.2-0.5). This is attributed to the following fact: when a less

synchronized point cloud gets fused to the ego vehicle’s

data, it is likely to cause the predicted bounding boxes of an

object to shift away from its ground-truth position. Such a

shift significantly lowers the IoU and also the AP of object

detection. Note that, the IoU values that fall in the leftmost

boxes, are equal to zero for all schemes. These are caused by

out-of-range objects.

Coverage of data sharing. RAO’s data scheduling is

expected to cover blind spots more efficiently. To quantify

the efficiency of data sharing, we utilize two metrics: the

density of objects and the coverage of objects. A higher

point density potentially leads to a higher confidence score

in object detection, improving the true positive rate. A higher

object coverage, on the other hand, reduces the number of

undetected objects, which means a lower false negative rate.

To obtain such metrics, we associate each LiDAR point in

each frame to a specific object using the ground truth labels

(non-object points have no associated objects). Assuming a

set of LiDAR images 𝑋 are generated from different vehicles

and they are finally merged to one single LiDAR image 𝑌 via

the cooperative perception, for each object in the scenario,

we can calculate the number of associated LiDAR points in

𝑋 and 𝑌 as 𝑁𝑋 and 𝑁𝑌 respectively. We define the metrics

as follows, where𝑀 is the total number of objects.

Density =
1

𝑀

𝑀∑︁
𝑖

𝑁
(𝑖)
𝑌
/𝑁 (𝑖)

𝑋
(8)

Coverage =
1

𝑀
|{𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑀 | 𝑁 (𝑖)

𝑌
> 0}| (9)

Table 2 lists the results of the above metrics. Compared to

AutoCast, RAO achieves a 50% higher object density score
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Figure 15: Perception performance w.r.t. vehicle motion.

and a 34% higher object coverage. The density and coverage

are also 29% and 7% higher than those of the edge-based

EMP. In addition, Figure 8 summarizes the distribution of

point density per object (𝑁
(𝑖)
𝑌
/𝑁 (𝑖)

𝑋
). Over 90% objects in RAO

have a density score around 0.2-0.4 and very few objects

host a high density of points. The result indicates that RAO
distributes shared LiDAR points on more objects instead of

augmenting a few objects that are already clearly visible.

Data scheduling in RAO successfully covers most objects in

the scenarios in an efficient fashion.

Examples. We next show visualized examples to illustrate

how RAO tackles the problems of asynchronous sensor data

(§3.1) and incomplete occlusion estimation (§3.2). As shown

in Figure 9, in the baseline schemes without synchroniza-

tion, the shared points from other CAVs (blue) will fall out of

the ground-truth bounding boxes (green) of the objects, re-

sulting in an inaccurate prediction (red). Instead, the LiDAR

points from different CAVs are well aligned in RAO, thanks to
prediction-based synchronization. Figure 10 demonstrates a

higher coverage of blind spots in RAO. The blue points repre-
sent the producer’s object points shared with the ego vehicle

(consumer). With the consumer’s knowledge, fine-grained

occluded areas are accurately identified.

6.3 Impacting Factors
We analyze the following impacting factors to understand

how RAO performs in various driving scenarios.

Distances to the egoCAV. Figure 11 presents the number

of correctly detected objects (IoU>0.5) based on the object’s

distance to the ego vehicle. As shown, the most perception

benefits come from the mid-range distances (20-40m and

40-80m range), where RAO outperforms AutoCast and EMP

with 7.04% to 24.03% (0.62 – 1.40) and 3.45% to 18.62% (0.30 –

1.14) more objects detected through collaboration.

Number of CAVs. We can learn from Figure 12 that, as

the number of CAVs participating in the cooperative percep-

tion increases, the perception accuracy gains of RAO become

larger. This is due to the fact that, with more vehicles collab-

orating, the impact of synchronization grows higher since

more vehicles fall out of sync with each other. For instance,

when there are 4-5 CAVs, RAO brings 6.95% and 7.63% im-

provements in perception accuracy over AutoCast and EMP,

respectively. This is 2× more than the 2-3 CAV collaboration

scenarios. More CAVs also increase system overhead but

RAO is scalable, as analyzed in §6.5.

Traffic density. Next, we consider the overall traffic den-

sity. We group the scenarios into three density levels based

on the number of all vehicles in each frame. In Figure 13,

RAO’s performance remains the best across all traffic density

settings, with 4.20% to 9.66% improvements.

Vehicle motion. CAV motion affects the accuracy of oc-

cupancy flow prediction (§4.4). We group perception targets

by their velocity and acceleration, and use IoU between the

predicted occupied regions and the ground truth to evaluate

prediction accuracy on each group. As shown in Figure 14,

prediction accuracy drops gradually as velocity and acceler-

ation increase, but still achieves 0.4 IoU on average in the

worst case (0.5 IoU is considered very accurate in percep-

tion [6]). Figure 15 further illustrates the impact of vehicle

motion on end-to-end perception accuracy. Although minor

inaccuracy of prediction exists, RAO consistently outper-

forms AutoCast and EMP in all situations by 3.65% to 13.60%.

6.4 Ablation Study
We do an ablation study to showcase how the two novel de-

signs, occupancy flow prediction and on-demand data sharing
(§4.1), improve the performance of cooperative perception.

Benefits of occupancy flow prediction. We create two

variants of RAO: (1) one disables prediction algorithms, mean-

ing that providers’ LiDAR images are not synchronized with

the consumer’s data; (2) the other enables ground-truth syn-

chronization, which directly moves objects points according

to ground-truth labels and perfectly synchronizes all LiDAR

images in data fusion. Figure 16 demonstrates the difference
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Figure 19: Latency breakdown of RAO.

Table 3: Data sharing overhead for each provider-
consumer pair per frame (mean±standard deviation).

Metrics EMP AutoCast RAO
LiDAR Points 8320±3228 3140±2171 3110±2501

Control data (KB) <0.1 <0.1 1.77±0.50
Total Volume (KB) 24.37±9.46 9.17±6.36 10.90±7.32

between our proposed RAO and the two altered versions.

The average precision achieved by employing ground-truth

prediction is only 1.97% higher than RAO. This suggests that
the synchronization module of RAO achieves a performance

close to the optimal. When disabling prediction, the accu-

racy of perception drops significantly by 13%, which also

highlights the importance of synchronization.

Benefits of on-demand data scheduling. We disable

data scheduling in RAO (i.e., producers directly share LiDAR

images after ground removal) and compare RAO with the

downgraded version. As shown in Figure 17, in all three

traffic scenarios, selectively sharing data in the occlusion

region reduces the data volume of sharing by over 68.45% (up

to 95.8%). RAO can achieve high perception accuracy (Table 1)

with such a limited amount of data sharing, validating RAO’s
accurate identification of critical areas for perception.

6.5 System Overhead
The latency of RAO consists of latencies from data processing,

network transmission, and perception, as discussed in §3.1.

Figure 19 provides a breakdown of different latency types.

Data processing involves occupancy map generation and

data scheduling. The occupancy map generation (clustering,

motion estimation, etc.) is the most compute-intensive in

RAO, which takes an average of 36.3 ms. Data scheduling

is lightweight and can be finished in 7.0 ms. The network

transmission latency depends on the size of shared data. A

comparison of data sizes is shown in Table 3. For each con-

nected pair of provider and consumer, in each frame, RAO
shares one LiDAR image containing 3110 points and one

occupancy map with 211 polygon vertices on average. Along

with tiny metadata such as LiDAR sensor pose and motion

information, the total shared data size is around 10.9 KB. The

size is similar to that of AutoCast’s data (9.17 KB) and is only

44% of EMP’s (>24 KB). Note that we remove background

points (§4.3) in EMP and AutoCast as well for a fair compar-

ison. The perception latency includes data fusion and model

inference. The data fusion module simply concatenates point

clouds, which introduces a minor latency of 8.5 ms. The

model inference time depends on the specific perception

model, and it is 34.5 ms in our implementation.

For each LiDAR image, the sum of computation latency

and network transmission latency (i.e., 𝛿2 in Equation 1) is

80.8 ms, indicating that the asynchronization between Li-

DAR images is around 80 – 180 ms. Thanks to the occupancy

flow prediction, the asynchronization issue is effectively ad-

dressed. Compared with single-vehicle perception, the only

latency that RAO introduces is the data fusion latency (8.5ms)

because each consumer starts perception immediately upon

the generation of its local LiDAR image, with other data

processing and network transmission tasks running simulta-

neously in the background.

RAO is scalable and works well under a large number of

participating CAVs. The overall bandwidth overhead grows

linearly with the number of connected CAVs (Figure 18).

Vehicular communication based on C-V2X can provide a

bandwidth of up to 100 Mbps [22, 43], far beyond sufficient

for our system. The overhead of occupancymap generation is

independent with the number of CAVs as each CAV processes

its own LiDAR images locally.

6.6 Case study: RAO’s Real-world Benefits
In addition to the experiments on large-scale datasets, we

conduct another empirical case study using data collected at

Mcity to demonstrate RAO’s superior performance in the real

world. As shown in Figure 20, the ego CAV is turning right
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Figure 20: Case study of multiple cooperative percep-
tion schemes on real-world drive scenes atMcity.

on red and should yield to a vehicle (target) coming from

the left. The ego CAV’s view toward the target, however,

is blocked by obstacles, making it necessary to rely on the

other two CAVs to localize the target.

We execute RAO, EMP, and AutoCast and find that, (1)

EMP is not aware of occlusion and its data scheduling solely

depends on distances. Since the LiDAR data of the target

area should be shared by the CAV closest to it, at specific

locations (red section of the trajectory), other CAVs will not

share data for the target even though the target is in the

blind spot of the ego vehicle, leading to a failed detection. (2)

AutoCast can recognize the blind spot and ask the red CAV

to share LiDAR data, but it suffers from a serious synchro-

nization issue (§3.1) that makes object detection unstable

in certain frames. (3) In contrast, RAO addresses both blind

spot detection and synchronization issues simultaneously,

producing well-aligned augmented point clouds.

Over the 25 examined frames (2.5 s) in which the target

is in the blind spot, RAO consistently identifies the target,

while EMP and AutoCast fail on 12 and 5 frames, respectively.

Notably, detected objects in AutoCast have a relatively higher

deviation from the ground truth due to the asynchronous

data. In this case, RAO’s robust perception earns more time

for the ego CAV to react to the incoming traffic.

7 RELATEDWORK
RAO relates to prior works in the following areas:

Cooperative Vehicular Sensing. Various efforts have
been made on cooperative vehicular sensing. Most existing

data sharing systems can be divided into vehicle-to-vehicle

(V2V) based schemes [15–17, 32, 40, 50, 51, 63] and vehicle-to-

infrastructure (V2I) based schemes [31, 41, 69]. For example,

EMP [69], Carcel [31], and LiveMap [41] are V2I examples

that use a cloud or edge node to aggregate vehicle data.

Moreover, VI-Eye [26] proposes a point cloud registration

method for merging vehicle data with infrastructure data.

CRCNet [42] explores ways to reduce redundancy in data

sharing from the neural network perspective. The release of

multi-vehicle perception datasets [38, 63, 66] greatly facili-

tates the research in multi-vehicle collaboration.

Merging intermediate results. Some of the works [15,

58] advocate merging intermediate results generated from

sensor data to loosen the bandwidth requirements. Inevitably,

different vehicles may adopt various perception architectures

and thus their intermediate datamay not be compatible. Xu et
al. [61] and Qiao et al. [49] develop frameworks to tolerate

the differences among feature structures. However, sharing

raw data is more generalizable since no prior knowledge is

needed to make use of the universal format of sensor data.

Domain adaptation for feature merging cannot be directly

applied to unseen structures and requires retraining.

Vehicle Data Synchronization. In real-world driving

scenarios, it is extremely hard to guarantee vehicles generate

sensor data at the same pace. There are a few works that

tackle the synchronization problem in cooperative data shar-

ing. V2VNet [58] proposes a joint perception and prediction

framework to compensate for delay from asynchronous in-

puts. SyncNet [35] adapts vehicles’ asynchronous perceptual

features to the same timestamp using a latency compensa-

tion module. VIPS [54] leverages graph matching to align de-

tected objects across scenes. However, they consider feature-

or object-level fusion while we focus on synchronizing raw

sensor data by tracking clusters in occupancy maps.

8 CONCLUDING REMARKS
In this work, we design, implement, and evaluate RAO, a
real-time occlusion-aware multi-vehicle collaboration sys-

tem running on asynchronous sensors. With the sophisti-

cated integration of motion-aware occupancy map, occu-

pancy flow prediction, and data scheduling, RAO intelligently

shares sensor data filling blind spots of other vehicles with

minimized network bandwidth consumption and accurately

aligns data collected under real-world asynchronous sensor

settings through prediction. We believe that our approach to

tackling the synchronization issue in sensor sharing can spur

a new wave of autonomous driving applications based on

multi-vehicle collaboration, and ultimately accelerate their

real-world deployment.
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