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Abstract

High-definition (HD) maps are vital for autonomous driv-
ing, providing fine-grained geometric and semantic infor-
mation beyond the scope of onboard perception. How-
ever, automatically constructing accurate vectorized maps
at scale using learning-based methods remains challeng-
ing, as individual vehicles observe only partial, localized
environments. This motivates the need for collaborative
HD map construction, where multiple vehicles contribute
local observations to build a unified global map. While col-
laborative perception has been extensively studied through
dense BEV fusion, existing methods are fundamentally ego-
centric and operate within a fixed perception range, making
them ill-suited for large-scale, open-world mapping. In this
paper, we propose a graph-based sparse fusion framework
for collaborative vectorized HD map construction. Vehi-
cles build local HD maps collaboratively and encode them
as sparse geometric graphs, which are fused by a sparse-
to-sparse fusion algorithm that incrementally aligns and
merges graphs across space and time. This design lever-
ages multi-agent fine-grained features and enables scal-
able, memory-efficient fusion without relying on dense ten-
sors. Experimental results show that our method constructs
accurate global maps under sparse and asynchronous ob-
servations, outperforming baselines by over 10.3 mAP.

1. Introduction
High-definition (HD) maps play a critical role in au-
tonomous driving by providing rich geometric and semantic
information, such as lane boundaries and pedestrian cross-
ings. Among various formats [4, 10–13, 16, 23], vector-
ized HD maps — which represent map elements as struc-
tured primitives such as polylines and polygons — have
gained increasing popularity due to their compactness, in-
terpretability, and alignment with the formats used in plan-
ning and simulation [14]. In addition, vectorized represen-
tations are more memory-efficient, easier to update, and bet-
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ter suited for real-time applications. However, building ac-
curate vectorized HD maps at scale remains a major chal-
lenge. Due to limited sensing range [27], occlusions, and
coverage gaps, individual vehicles cannot construct reliable
maps on their own. This motivates the need for crowd-
sourced global HD map construction, where a fleet of ve-
hicles (also referred to as agents) contributes local observa-
tions to incrementally build a unified global map.

Previous efforts in collaborative perception and mapping
have primarily relied on dense feature fusion, where multi-
agent sensor data are encoded and projected into a shared
bird’s-eye-view (BEV) representation [6, 17, 23, 24, 28, 29,
31]. These methods aim to align perspective differences
among agents by aggregating features on fixed-size BEV
tensors. However, they are inherently ego-centric, cen-
tered around the field of view of a reference ego vehicle,
and typically confined to a fixed local range (e.g., 60 × 30
m). Consequently, dense fusion methods struggle with scal-
ability, and are ill-suited for global HD mapping that must
efficiently handle asynchronous, large-scale, and partially
overlapping observations. Therefore, building global HD
maps efficiently requires sparse and scalable fusion mecha-
nisms. Naively aggregating dense features from all agents
introduces significant redundancy and inefficiency, and is
prone to misalignment errors under temporal or spatial dis-
crepancies. To enable robust global HD map construction,
a new approach must: (1) incorporate multi-agent obser-
vations over extended space and time; (2) handle spatial-
temporal misalignments and inconsistencies; and (3) avoid
redundant computation and memory overhead.

To address these challenges, we propose CrowdMap.
Our key insight is to move away from dense, ego-centric
fusion and instead adopt a graph-based sparse fusion frame-
work. Vehicles collaboratively build semi-global HD map
elements as a sparse geometric graph, which captures both
structure and semantics. These graphs can be incremen-
tally fused across agents and across time, without requiring
dense alignment or overlapping perception fields. The re-
sulting system is inherently scalable to large maps and large
fleets while maintaining precision and resource efficiency.



In summary, the main contributions of this work are:
• We propose CrowdMap, a scalable, graph-based frame-

work for collaborative HD map construction from par-
tially overlapping multi-agent observations. To our
knowledge, this is the first multi-agent framework that
collaboratively constructs the global vectorized HD map.

• We develop a sparse-to-sparse graph encoding/decoding
algorithm that efficiently integrates multi-agent and
cross-time maps, with mechanisms to handle scalable
spatial-temporal misalignment via simple yet effective
overlapping detection and point-set registration.

• Different from prior HD map work that evaluates single-
vehicle datasets such as nuScenes [3] and Argoverse [22],
we introduce the multi-agent crowd-sourced global HD
map construction task and evaluate the performance using
real-world multi-vehicle datasets [26].

2. Method
2.1. Problem Definition and Solution Sketch
HD map is a collection of vectorized static map elements,
including pedestrian crossings, lane dividers, etc. In this
work, we aim to build a framework for global HD map
construction, where the generated map spans large spatial
regions far beyond the sensing range of a single vehicle.
Challenges in building global HD maps. Existing lo-
cal HD map models suffer from small perception range.
For example, MapTR [13] only constructs HD maps with
a small range of 60 × 30 m around the ego vehicle.
StreamMapNet [27] extends it to 100 × 50 m. However,
these methods still focus on a relatively small area com-
pared to constructing a global HD map. Building an end-to-
end global HD map construction framework faces two main
challenges: (1) Single-frame data from one vehicle is insuf-
ficient for building large regions; (2) Scaling transformer-
based BEV models [14, 16] to global regions is computa-
tionally infeasible due to the size of dense feature maps.
Limitation of existing global HD map construction
methods. Prior work [5, 20, 21, 25] on global HD map con-
struction can be broadly categorized based on their fusion
strategies: (1) late-fusion: Methods like PolyMerge [20]
merge vectorized map instances (e.g., polylines) from mul-
tiple local frames using rule-based heuristics like prox-
imity thresholds. However, this coarse-grained instance-
level merging overlooks fine-grained features across agents
or time, leading to suboptimal map quality. (2) tempo-
ral intermediate-fusion: Recent methods [5, 25, 27] incor-
porate temporal priors to aggregate historical map predic-
tions from a single vehicle. While this approach enables
global map construction by accumulating sequential data
over time, it is limited to single-agent settings and cannot
take advantage of crowdsourced data from multiple vehicles
for broader and more comprehensive map construction.
Solution sketch. To address the above limitations, we pro-

pose a novel framework for collaborative global HD map
construction, named CrowdMap (Fig. 1). The proposed
framework consists of two main components: an enhanced
semi-global collaborative map model and a sparse graph-
fusion model. In the first stage, we partition the global HD
map into semi-global tiles, where we train a collaborative
HD map model to generate vectorized map outputs. In the
second stage, we operate on the vectorized map outputs and
develop a sparse graph fusion mechanism to fuse the semi-
global map elements into the final global map.

2.2. Collaborative Semi-Global Map Model
Building HD maps at a global scale directly from BEV fea-
tures is computationally infeasible due to memory and scal-
ability constraints. To overcome this, we propose a col-
laborative semi-global map model that partitions the global
region into spatial tiles and aggregates multi-agent obser-
vations within each tile. In contrast to existing online HD
map models that rely on single-vehicle inputs with limited
perception ranges, our approach fuses fine-grained features
across multiple agents over larger areas, generating more
complete maps with improved coverage and robustness.
BEV feature generation. Given multi-agent sensor scans
(e.g., cameras or LiDAR), each agent’s data is processed
independently through a CNN backbone, a Feature Pyra-
mid Network (FPN) [15] fusion module, and a BEV en-
coder [19] to produce per-agent BEV feature maps.
Multi-agent BEV fusion. To fuse multi-agent features, we
use GPS/IMU metadata to apply affine transformations that
map each BEV feature to a global coordinate frame. Fol-
lowing [24], we apply spatial warping via bilinear interpo-
lation and fuse the aligned features using a simple maxout
operation [6] over corresponding spatial locations.
Map decoder. We build our map decoder using a variant of
the Deformable DETR model [32]. Following MapTR [13],
we use a set of learnable queries to interact with fused BEV
features and directly predict vectorized map element in-
stances within the semi-global region.

2.3. Sparse-to-Sparse Graph Fusion
After generating vectorized map elements within semi-
global regions, we apply a sparse-to-sparse graph fusion
mechanism to construct the final global HD map. This ap-
proach avoids large BEV features and dense decoding by
directly operating on aggregated multi-agent map elements,
enabling scalable global map construction. The graph fu-
sion module follows an encoder-decoder architecture.
Graph encoder. The graph encoder encodes the vector-
ized map elements produced by the semi-global map model.
Each vectorized map element is represented as a node, and
spatial or semantic relationships between elements are cap-
tured as edges in the graph. In addition to geometric struc-
ture, each node stores relevant metadata (e.g., the coordi-
nates of its constituent points and the confidence score of
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Figure 1. Overall architecture of CrowdMap.

its predicted label) which enables efficient identification of
overlapping or conflicting elements at the node level.
Graph decoder. Unlike prior map decoding stages focused
on generating accurate local HD maps, our approach intro-
duces an inter-map decoding stage to mitigate discrepancies
between partially overlapping maps from multiple agents.
Leveraging graph-based representations—where each map
element is modeled as a node—we aggregate nodes from
neighboring agents and identify overlapping or conflicting
elements based on spatial proximity. Overlaps are deter-
mined using Chamfer Distance [2, 12], with pairs consid-
ered overlapping if the distance falls below a predefined
threshold. This enables selective refinement of semantically
or geometrically inconsistent regions, avoiding full map re-
generation and supporting efficient fusion of vectorized HD
maps with structural interpretability.

To enhance the quality and consistency of the fused HD
map, we introduce a lightweight, type-aware refinement
module. After constructing the graph-based global map, we
apply rigid point-set registration to address spatial-temporal
misalignments in the 2D coordinates of points within map
elements, inspired by ADoPT [7]’s demonstration that point
registration can guide the measurement of temporal con-
sistency. Since different element types respond differently
to viewpoint variation, registration is performed in a type-
specific manner. We adopt the Coherent Point Drift (CPD)
rigid registration [18], which is well suited to our structured
2D primitives (polylines and polygons), aligning each over-
lapping element to the most plausible one—typically the
segment with the highest confidence score. In contrast to
the prior state-of-the-art method [20], which lacks a fine-
grained understanding of viewpoint discrepancies between
vehicles and relies on heuristics, our approach introduces
an explicit graph-based inter-map decoding stage that struc-
turally and semantically resolves misalignments between
overlapping elements, ultimately enabling more consistent
and high-fidelity collaborative HD map construction.

3. Preliminary Experiment Results
3.1. Experiment Setup
Datasets and evaluation. We evaluate our method on
the real-world multi-vehicle dataset DAIR-V2X [26] by
employing the standard processing setting of previous lo-

cal HD map methods [12–14]. The DAIR-V2X dataset
includes one vehicle and one infrastructure agent, each
equipped with a front-view RGB camera, and provides 2D
global vectorized HD map annotations across six intersec-
tions. Since only front camera data is available, we restrict
the local perception range to the front (positive x-axis) of
each agent. Specifically, we define the perception range as
0–30 meters for the vehicle agent and 0–50 meters for the
infrastructure agent along the x-axis, with a shared lateral
field of view of [−15, 15] meters along the y-axis. For the
collaborative semi-global model, we set the range to 120 ×
60 m and randomly sample 10 images from the vehicle and
infrastructure data scans for each data batch in training. We
use the mAP metric [13, 14] over [0.5, 1.0, 1.5m] chamfer
distance thresholds for evaluation.
Training details. We train our model with 4 NVIDIA A100
GPUs with a batch size of 8. We adopt ResNet50 [9] as the
image backbone and adopt AdamW optimizer for training.
Baseline solutions. We compare against baselines built on
the MapTR [14] local HD map model, combined with dif-
ferent late-fusion strategies: PolyMerge [20], Fréchet Dis-
tance Clustering (FDC) [1], and Heatmap Buffer Merge
(HBM) [8]. Since DAIR-V2X includes two distinct agents
(vehicle/infrastructure), we train separate MapTR models
for each, using their respective camera parameters.

3.2. Quantitative Results
Local and semi-global HD map performance. First, we
evaluate the local HD map prediction on the multi-agent
dataset DAIR-V2X, which has not been done by previous
work. Table 1 compares the local HD map prediction ac-
curacy of both the vehicle agent and infrastructure agent.
We notice that existing online HD map solutions work well
for short-range perception (e.g., 30 × 30 m). However, as
shown in Table 2, the performance of single-vehicle lo-
cal HD map perception deteriorates significantly when the
range increases to a semi-global tile of 120 × 60 m. Our pro-
totype CrowdMap aggregates multi-agent information spa-
tially and temporally, improving AP performance by more
than 45% compared to MapTR local.
Global HD map performance after merging. Table 3
presents the global HD map accuracy at two intersections in
the DAIR-V2X dataset. Our proof-of-concept implementa-



Ground Truth (local) Prediction (local)

(a) Infrastructure

Pedestrian crossingLane divider

(b) vehicle 1 (c) vehicle 2

Ground Truth (local) Prediction (local) Ground Truth (local) Prediction (local)

Figure 2. Visualization of local vectorized HD map construction using infrastructure and vehicle sensors.
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Figure 3. Sparse graph fusion of the local HD maps of vehicle 1
and 2 (see Fig. 2). Colored arrows highlight misalignments caused
by viewpoint discrepancies across vehicles in overlapping objects.

Table 1. Performance of local vectorized HD map prediction.

Range Method Agent/Method APped APdiv mAP

30 × 30 m MapTR Vehicle-local 0.745 0.909 0.827
50 × 50 m MapTR Infra-local 0.772 0.785 0.778

Table 2. Performance on semi-global HD map prediction.

Range Method Agent/Method APped APdiv mAP

120 × 60 m MapTR Vehicle-local 0.182 0.103 0.143
120 × 60 m CrowdMap Semi-global 0.599 0.682 0.641

Ground Truth (Global-Map06) MapTR + HBM
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Figure 4. Global HD map construction results on DAIR-V2X.

tion of CrowdMap outperforms all baseline fusion methods
by more than 10.0 absolute mAP, demonstrating the effec-
tiveness of our approach. These results highlight the poten-
tial of our learning-based pipeline as a promising direction
for scalable and accurate global HD map construction.

3.3. Visualization Results
Local map prediction results. Fig 2 illustrates examples
of local HD map prediction from vehicle and infrastructure
views. The local vectorized HD map construction quality is

Table 3. Performance comparison on global vectorized HD map
construction.

Range Method Map Name APped APdiv mAP

300 × 300 m

MapTR + PolyMerge Map-06 0.148 0.085 0.117
MapTR + FDC Map-06 0.202 0.027 0.114
MapTR + HBM Map-06 0.159 0.148 0.154
CrowdMap Map-06 0.332 0.188 0.260

250 × 250 m

MapTR + PolyMerge Map-13 0.618 0.081 0.399
MapTR + FDC Map-13 0.516 0.018 0.264
MapTR + HBM Map-13 0.575 0.063 0.319
CrowdMap Map-13 0.818 0.179 0.499

quite accurate using STOA approaches [14]. However, the
issue arises in producing a consistent and accurate global
map by directly fusing local observations.
Global map construction results. Fig 4 shows an example
of global HD map construction results using different fusion
methods. As shown, CrowdMap significantly outperforms
baseline methods by producing a more fine-grained and ac-
curate representation. This improvement stems from accu-
rate point-set registration, which effectively resolves mis-
alignments caused by discrepancies in viewpoints across
different vehicles when handling overlapping or conflicting
map elements, as illustrated in Fig. 3. None of the baseline
late-fusion methods produces an accurate global HD map
by fusing multi-agent local map observations. For instance,
we find that PolyMerge [20] is fast and creates smooth re-
sults for most lane dividers, but it can easily be influenced
by outliers and partial observations of pedestrian crossing,
making the merged pedestrian crossing inaccurate. All three
baseline methods fail to generate accurate global maps, in-
dicating the inefficiency of existing late-fusion techniques
for collaborative global map construction.

4. Discussion and Conclusion
In this paper, we experiment with building global HD
maps with vision transformer-based local HD map mod-
els plus late-fusion techniques. Our analysis reveals sig-
nificant accuracy degradation when applying late fusion on
independently predicted local maps, highlighting the limi-
tations of conventional approaches in collaborative multi-
agent settings for global HD map construction. We propose
CrowdMap, a novel end-to-end framework that leverages
crowdsourced multi-agent data and performs sparse graph-
based fusion to generate consistent and scalable global HD
maps. We plan to optimize our framework and expand eval-
uation to more multi-vehicle datasets [30] in future work.
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